# Section C: Assessment of California halibut north of Point Conception. 

## C1. Model

The assessment model is identical to that used for the southern stock with the following features:

1) Growth parameters of the Richards growth curve are estimated while fitting to age-conditioned- on-length data. This is to accommodate the San Francisco Bay Delta (Bay Delta) trawl survey data that captures young fish and provides information on growth. The length at age zero is assumed to be the same for males and females.
2) Variation of length-at-age is modeled assuming the Coefficient of Variation (CV) is constant over age and the parameters are estimated for males and females.
3) All the selectivity parameters are fixed at the values estimated for the southern stock except the width of the mode and the descending limb of the Commercial Passenger Fishing Vessel (CPFV) recreational fishery (the other recreational fishery in the model, which combines all remaining recreational fishing modes, uses the same selectivity parameters as the CPFV fishery) and the parameters of the bottom trawl fishery selectivity.
4) Initial equilibrium fishing mortality rates are estimated for five of the fisheries and the model is fit to the catch averaged over the first 5 years by fishery.
5) The model is fit to the swept area estimate of abundance with the catchability fixed at one because without this data the model cannot estimate reasonable values for absolute abundance.
6) The composition sample sizes are not reweighted.

## C1.1. Summary of data used in the assessment

Data used in the assessment are only from north of Point Conception. Catch by fishery is shown in Table C1.6.1. and in Figures C1.6.1 and C1.6.2. The model is fit to indices of relative abundance based on standardized catch-per-unit-effort (CPUE) from CPFV log books, trawl logbook CPUE, the Bay Delta trawl survey, and to an estimate of absolute abundance based on a swept area trawl survey. The model is fit to retained catch length and weight composition data for the CPFV/charter boat and private/rental boat fisheries. Length composition data for the other recreational fisheries (shore-based fisheries) are not used because the sample sizes are small and the catch by those fisheries is small. Length composition data for only the bottom trawl commercial fisheries are used because the sample sizes are small for the other fisheries
and they are only available for a few years. Only one year of length composition data is used for the trawl fishery, but the selectivity is very different from the southern stock. The model is also fit to length composition data for the Bay Delta trawl survey and sex-specific age composition from the swept area trawl survey. A multinomial likelihood with the recorded sample sizes is used for the likelihood function. Years with sample sizes less than 20 fish were excluded from the analysis.

## C2. Data

## C2.1. CPFV logbook

Only data from CPFV trips that were considered to target California halibut based on expert judgment about associated species are used to create the index, which extends from 1980 to 2010. Data is also available prior to 1980, but lack detail to identify the target species. The catch of California halibut per angler hour for inshore blocks separated into north (Pigeon Point to Point Arena), central (Lopez Point to Pigeon Point), and south (Point Conception to Lopez Point). Sub-areas were standardized separately for the categorical variables year, month, and block using a delta-lognormal regression (Table C2.1.1, Figure C2.1.1). The combined year effect from the binomial and lognormal components of the regression was used as the index of relative abundance. A combined index was created as the average weighted by the number of blocks in each sub-area. This index is assumed proportional to the number of fish selected by the CPFV fishery. The index was used in the assessment model. The index is fit using a lognormal likelihood function with a standard deviation for the logarithm of the index set to 0.3 (approximately equivalent to a CV).

## C2.2. Trawl logbook data

See the southern stock assessment for details. Depth was not used as an explanatory variable because categorizing the data by depth generated too many records for the software used to do the analysis. Jackknife estimates of uncertainty were not calculated due to the large size of the data set. This index was used in the assessment model (Table C2.2.1, Figure C2.2.1).

## C2.3. San Francisco Bay Estuarine Complex (Bay Delta) Study

The Bay Delta Study (http://www.dfg.ca.gov/delta/projects.asp?ProjectID=BAYSTUDY) was established in 1980 to determine the effects of freshwater outflow on the abundance and distribution of fish and mobile crustaceans in the Bay Delta. The catch of California halibut (primarily young-of-the-year) per trawl was standardized for the categorical variables year and station using a delta-lognormal regression (Table C2.3.1, Figure C2.3.1). The combined year effect from the binomial and lognormal components of the regression was used as the index of
relative abundance. The data from three regions (West Delta, Sacramento River, and San Joaquin River) were eliminated from the analysis due to very low occurrence of California halibut. The survey has associated length composition data that can be used to estimate a selectivity curve to determine the component of the population it relates to. Standard errors were calculated using a jackknife procedure. This index was used in the assessment model.

## C2.4. Length composition data

Length composition data is available from several sources. Commercial length composition by gear and sex come from the California Department of Fish and Game's (CDFG) State Finfish Management Project (2007-2010) database (Table C2.4.1, Figure C2.4.1). Some data is not available by sex. Recreational length composition data of the retained catch comes from the Recreational Fisheries Information Network (RecFIN) (1993-2010) databases (Table C2.4.2, Figure C2.4.2). Weight frequency data is available for 1980-1989 from the RecFIN database. Length composition data is also available for the Bay Delta trawl survey (Table C2.4.2, Figure C2.4.3) .

## C2.5. Age composition data

Sex-specific age composition data is available for the swept area survey and is used in the model to estimate the selectivity for this survey (Table C2.5.1).

## C2.6. Age conditioned on length data

Length-at-age data is available for the swept area trawl survey (MacNair et al. 2001) and for fish collected from the commercial fisheries (Reilly and Tanaka pers com). These data were used in the model as age conditioned on length to provide information on growth and variation of length-at-age.

## C3. Results

## C3.1. Model fit

The stock assessment model provides reasonable fits to the CPFV index of relative abundance (Figure C3.1.1a) and the recreational fisheries length composition data (Appendix). The commercial fisheries length composition data are highly variable and the commercial fishery selectivities are fixed based on the southern stock assessment (except for bottom trawl), therefore the fit to the composition data for these fisheries is poor for some fisheries (Appendix). The root mean square error (RMSE) (0.35) of the fit to the CPFV index is higher
(Table C3.1.2) than the assumed standard error (SE) for this index (0.3). The fit to the other indices is worse in terms of RMSE (Table C3.1.2), but their trends are generally consistent (Figures C3.1.1b and c). The effective sample sizes for the length composition data are all smaller than the input sample size (Table C3.1.1). The model fits the age-length data reasonably well (Figure C3.2.5). The stock assessment model's biomass estimate of 832 metric tons ( mt ) is larger than the swept area trawl survey biomass estimate of 707 mt .

The model had difficulty converging and was sensitive to starting values and phases of parameter estimation.

## C3.2. Estimates

The stock is estimated to have increased rapidly starting in 1995 (Figure C3.2.1). The increase in abundance is due to large recruitments, which appear to occur in a cyclic pattern, and the magnitude of the cycles increased after 1990 (Figure C3.2.2).

The estimated selectivity curve for the recreational fisheries appears reasonable (Figure C3.2.4), but differs somewhat from that estimated for the southern stock. The estimated male selectivity curve for the bottom trawl fishery is somewhat unusual (Figure C3.2.4b).

## C3.3. Management quantities

The population is estimated to be well above the biomass associated with maximum sustainable yield (Bmsy) and fishing mortality is well below the fishing mortality rate associated with maximum sustainable yield (Fmsy) either using the estimated MSY quantities or the 25\% proxy (Table C3.3.1; Figure C3.3.1).

## C3.4. Sensitivity analyses

No sensitivity analyses were carried out with the updated data.

## C3.5. Discussion

The stock assessment results are consistent with the data. The estimated abundance trend is consistent with the trends in the indices of abundance. The model is only able to provide reasonable estimates of the absolute abundance if the swept area trawl survey estimate of absolute abundance is used in the model. However, the trends in abundance are robust and follow from the recruitment estimates. These results suggest the stock abundance is driven by recruitment, which is probably environmentally driven, and fishing is not currently a major factor in controlling the abundance level.

## Tables

Table C1.6.1. Catch for each of the fisheries used in the assessment. Catch is in kg except for the recreational fisheries, which are in number of fish.(Comm = commercial; Rec = recreational)

|  | Comm | Comm | Comm | Comm | Comm | Rec |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | bottom trawl | single rigged trawl | trawl <br> with <br> footrope <br> < 8 <br> inches | hook and line | gill net | CPFV | Other recreational |
| 1980 | 0 | 0 | 0 | 4,396 | 74,937 | 4,057 | 7,148 |
| 1981 | 0 | 0 | 0 | 5,485 | 123,326 | 270 | 4,423 |
| 1982 | 123,300 | 119 | 0 | 19,155 | 154,646 | 1,403 | 12,234 |
| 1983 | 159,167 | 1,206 | 0 | 11,986 | 92,791 | 2,906 | 10,835 |
| 1984 | 84,365 | 1,861 | 0 | 3,362 | 91,759 | 949 | 4,438 |
| 1985 | 56,159 | 444 | 0 | 9,152 | 128,118 | 896 | 2,416 |
| 1986 | 66,531 | 152 | 0 | 18,203 | 139,665 | 396 | 4,931 |
| 1987 | 82,020 | 12 | 0 | 17,900 | 114,393 | 2,192 | 22,448 |
| 1988 | 143,390 | 0 | 0 | 12,845 | 49,497 | 616 | 19,289 |
| 1989 | 115,789 | 0 | 0 | 57,133 | 108,685 | 529 | 9,076 |
| 1990 | 81,860 | 0 | 0 | 35,484 | 58,490 | 779 | 5,328 |
| 1991 | 142,446 | 0 | 0 | 31,772 | 31,014 | 666 | 4,554 |
| 1992 | 190,832 | 0 | 0 | 35,030 | 12,550 | 1,522 | 10,409 |
| 1993 | 151,727 | 50 | 0 | 33,974 | 8,130 | 0 | 31,070 |
| 1994 | 94,188 | 365 | 0 | 48,112 | 12,431 | 0 | 51,907 |
| 1995 | 122,948 | 792 | 0 | 69,269 | 23,264 | 0 | 267,007 |
| 1996 | 158,251 | 1,958 | 0 | 62,921 | 34,071 | 3,177 | 83,613 |
| 1997 | 293,311 | 1,321 | 0 | 65,024 | 67,524 | 1,657 | 44,678 |
| 1998 | 270,559 | 2,763 | 0 | 51,702 | 43,638 | 2,789 | 41,086 |
| 1999 | 239,640 | 483 | 176 | 47,179 | 67,992 | 1,333 | 23,429 |
| 2000 | 89,095 | 3,126 | 31,825 | 36,690 | 21,592 | 11,754 | 47,387 |
| 2001 | 67,522 | 5,440 | 54,212 | 42,608 | 12,583 | 10,111 | 90,903 |
| 2002 | 46,510 | 1,527 | 95,700 | 56,047 | 9,041 | 5,708 | 117,708 |
| 2003 | 55,715 | 6,676 | 73,587 | 83,669 | 5,429 | 7,638 | 99,499 |
| 2004 | 84,179 | 16,256 | 135,976 | 61,543 | 2,416 | 3,445 | 13,907 |
| 2005 | 39,566 | 13,353 | 228,151 | 45,846 | 2,648 | 5,423 | 16,625 |
| 2006 | 8,655 | 12,621 | 173,187 | 26,407 | 3,992 | 296 | 15,648 |
| 2007 | 3,500 | 379 | 50,317 | 19,271 | 3,441 | 3,590 | 11,713 |
| 2008 | 2,904 | 0 | 49,488 | 52,481 | 588 | 11,653 | 42,941 |
| 2009 | 10,914 | 8,215 | 80,017 | 59,986 | 133 | 6,626 | 37,652 |
| 2010 | 16,038 | 7,877 | 61,559 | 46,889 | 49 | 5,413 | 17,081 |

Table C2.1.1. Indices of relative abundance for the CPFV logbook data Sub-areas were standardized separately for the categorical variables year, month, and block using a deltalognormal regression. The combined year effect from the binomial and lognormal components of the regression was used as the index of relative abundance.

|  | North (31 blocks) |  |  |  |  |  |  |  | Central (16 blocks) | South (20 blocks) | Combined |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| Year | Index | Obs | Index | Obs | Index | Obs | Index |  |  |  |  |
| 1980 | 0.04211 | 171 |  | 1 | 0.016354 | 12 | 0.03201 |  |  |  |  |
| 1981 | 0.043015 | 304 |  | 4 | 0.019191 | 11 | 0.033672 |  |  |  |  |
| 1982 | 0.040673 | 302 |  | 3 | 0.038948 | 3 | 0.039997 |  |  |  |  |
| 1983 | 0.032612 | 431 |  |  | 0.011899 | 13 | 0.024489 |  |  |  |  |
| 1984 | 0.018461 | 337 | 0.032283 | 1 | 0.015768 | 16 | 0.020958 |  |  |  |  |
| 1985 | 0.019972 | 290 | 0.069428 | 1 | 0.016564 | 22 | 0.030765 |  |  |  |  |
| 1986 | 0.028487 | 342 | 0.034097 | 33 | 0.010553 | 29 | 0.024473 |  |  |  |  |
| 1987 | 0.020075 | 314 | 0.020569 | 14 | 0.018631 | 24 | 0.019762 |  |  |  |  |
| 1988 | 0.019972 | 306 | 0.024009 | 21 | 0.034382 | 33 | 0.025237 |  |  |  |  |
| 1989 | 0.024359 | 156 | 0.032291 | 21 | 0.053697 | 84 | 0.035011 |  |  |  |  |
| 1990 | 0.025289 | 212 | 0.018412 | 19 | 0.045728 | 71 | 0.029748 |  |  |  |  |
| 1991 | 0.024012 | 217 | 0.030454 | 15 | 0.023228 | 57 | 0.025316 |  |  |  |  |
| 1992 | 0.033869 | 304 | 0.046852 | 27 | 0.026565 | 79 | 0.034789 |  |  |  |  |
| 1993 | 0.035134 | 180 | 0.036202 | 16 | 0.022069 | 51 | 0.031489 |  |  |  |  |
| 1994 | 0.051983 | 294 | 0.039799 | 21 | 0.024814 | 59 | 0.040963 |  |  |  |  |
| 1995 | 0.074953 | 565 | 0.037184 | 16 | 0.023098 | 49 | 0.050454 |  |  |  |  |
| 1996 | 0.078742 | 912 | 0.082046 | 7 | 0.026502 | 39 | 0.063937 |  |  |  |  |
| 1997 | 0.05969 | 630 | 0.056769 | 18 | 0.01559 | 39 | 0.045829 |  |  |  |  |
| 1998 | 0.048823 | 906 | 0.031681 | 12 | 0.020247 | 39 | 0.036199 |  |  |  |  |
| 1999 | 0.039988 | 667 | 0.067272 | 43 | 0.013602 | 29 | 0.038627 |  |  |  |  |
| 2000 | 0.037415 | 863 | 0.052554 | 75 | 0.01462 | 53 | 0.034226 |  |  |  |  |
| 2001 | 0.050125 | 969 | 0.103309 | 122 | 0.024532 | 21 | 0.055186 |  |  |  |  |
| 2002 | 0.059647 | 825 | 0.040965 | 52 | 0.016092 | 21 | 0.042184 |  |  |  |  |
| 2003 | 0.06466 | 830 | 0.079167 | 87 | 0.013084 | 24 | 0.052729 |  |  |  |  |
| 2004 | 0.037941 | 510 | 0.08573 | 53 | 0.020156 | 49 | 0.044045 |  |  |  |  |
| 2005 | 0.032745 | 487 | 0.068603 | 32 | 0.012583 | 11 | 0.035289 |  |  |  |  |
| 2006 | 0.040895 | 438 | 0.056673 | 27 | 0.014903 | 10 | 0.036904 |  |  |  |  |
| 2007 | 0.035081 | 511 | 0.07059 | 12 | 0.009702 | 11 | 0.035985 |  |  |  |  |
| 2008 | 0.097407 | 1147 | 0.074059 | 15 | 0.051792 | 4 | 0.078215 |  |  |  |  |
| 2009 | 0.075961 | 1087 | 0.070474 | 28 | 0.008455 | 14 | 0.054499 |  |  |  |  |
| 2010 | 0.048034 | 779 | 0.077621 | 26 | 0.009093 | 10 | 0.043475 |  |  |  |  |

Table C2.2.1. Index of relative abundance for the trawl logbook data. Catch of California halibut per tow from the trawl logbook were standardized using the categorical variables year, month, and block using a delta-lognormal regression. The data were aggregated by these categories for analysis. The data was limited to trips that caught California halibut and/or species associated with California halibut (based on expert opinion).

| Year | Value | Records | Year | Value | Records | Year | Value | Records |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | NA | 17 | 1990 | 0.014928 | 1050 | 2000 | 0.026356 | 919 |
| 1981 | 0.013732 | 1140 | 1991 | 0.018283 | 1110 | 2001 | 0.04385 | 913 |
| 1982 | 0.01626 | 1170 | 1992 | 0.021501 | 1148 | 2002 | 0.019049 | 833 |
| 1983 | 0.035055 | 1122 | 1993 | 0.031341 | 1116 | 2003 | 0.02278 | 766 |
| 1984 | 0.012106 | 1017 | 1994 | 0.031503 | 1075 | 2004 | 0.047837 | 647 |
| 1985 | 0.006249 | 1125 | 1995 | 0.07465 | 1068 | 2005 | 0.044951 | 630 |
| 1986 | 0.016498 | 1116 | 1996 | 0.082036 | 1138 | 2006 | 0.036874 | 620 |
| 1987 | 0.009477 | 1026 | 1997 | 0.061686 | 1321 | 2007 | 0.005095 | 624 |
| 1988 | 0.011007 | 1067 | 1998 | 0.10178 | 1121 | 2008 | 0.012863 | 642 |
| 1989 | 0.010145 | 1128 | 1999 | 0.054556 | 1057 |  |  |  |

Table C2.3.1. Index of relative abundance for the Bay Delta Study.

| Year | Value | CV | Year | Value | CV | Year | Value | CV |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1980 | 0.139475 | 0.390538 | 1990 | 0.610589 | 0.216796 | 2000 | 1.789739 | 0.130929 |
| 1981 | 0.137945 | 0.365893 | 1991 | 0.991783 | 0.183 | 2001 | 0.72248 | 0.215699 |
| 1982 | 0.150038 | 0.373409 | 1992 | 1.49521 | 0.168135 | 2002 | 0.532378 | 0.257612 |
| 1983 | 0.141367 | 0.387906 | 1993 | 5.251172 | 0.109299 | 2003 | 0.345227 | 0.272975 |
| 1984 | 0.309449 | 0.278367 | 1994 | 2.412884 | 0.140306 | 2004 | 0.54411 | 0.228041 |
| 1985 | 0.547773 | 0.212229 | 1995 | 1.57715 | 0.145671 | 2005 | 3.119688 | 0.133646 |
| 1986 | 0.510471 | 0.225285 | 1996 | 0.596945 | 0.20528 | 2006 | 4.773427 | 0.118914 |
| 1987 | 0.524927 | 0.219851 | 1997 | 0.465569 | 0.222999 | 2007 | 1.959884 | 0.13709 |
| 1988 | 0.279271 | 0.259298 | 1998 | 2.807679 | 0.155505 | 2008 | 0.923466 | 0.177272 |
| 1989 | 0.200589 | 0.374596 | 1999 | 5.587436 | 0.113545 |  |  |  |

Table C2.4.1. Number of fish sampled for commercial length composition data.

|  | Bottom trawl |  | Hook and line |  | Single rigged trawl |  | Trawl with footrope diameter < 8 inches |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Sex combined | Sex specific |
| 2007 | 16 | 151 | 2 | 2 | 1 | 29 | 9 | 97 |
| 2008 |  |  | 40 | 112 |  |  | 23 | 195 |
| 2009 |  |  |  | 29 |  |  | 16 |  |
| 2010 |  |  |  | 3 |  |  |  |  |

Table C2.4.2. Number of fish sampled for recreational and Bay Delta Study length and weight composition data.

|  | Length |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | CPFV | Other recreational | Bay study | CPFV | Other recreational |
| 1980 |  |  | 9 | 6 | 17 |
| 1981 |  |  | 9 | 1 | 9 |
| 1982 |  |  | 9 |  | 26 |
| 1983 |  |  | 7 | 2 | 28 |
| 1984 |  |  | 21 | 7 | 10 |
| 1985 |  |  | 32 | 6 | 8 |
| 1986 |  |  | 31 | 3 | 11 |
| 1987 |  |  | 29 | 12 | 35 |
| 1988 |  |  | 19 | 1 | 15 |
| 1989 |  |  | 8 | 3 | 20 |
| 1990 |  |  | 28 |  |  |
| 1991 |  |  | 42 |  |  |
| 1992 |  |  | 62 |  |  |
| 1993 |  | 126 | 230 |  |  |
| 1994 | 3 | 246 | 109 |  |  |
| 1995 | 158 | 428 | 89 |  |  |
| 1996 | 67 | 523 | 49 |  |  |
| 1997 | 17 | 165 | 37 |  |  |
| 1998 | 29 | 189 | 212 |  |  |
| 1999 | 18 | 136 | 321 |  |  |
| 2000 | 48 | 246 | 126 |  |  |
| 2001 | 90 | 291 | 38 |  |  |
| 2002 | 82 | 326 | 24 |  |  |
| 2003 | 147 |  | 17 |  |  |
| 2004 | 96 | 824 | 26 |  |  |
| 2005 | 43 | 891 | 168 |  |  |
| 2006 | 35 | 1026 | 251 |  |  |
| 2007 | 86 | 806 | 109 |  |  |
| 2008 | 210 | 2501 | 50 |  |  |
| 2009 | 105 | 2529 |  |  |  |
| 2010 | 30 | 1161 |  |  |  |

Table C2.5.1. Sex-specific numbers at age sampled in the swept area trawl survey.

Age | Female |  | Male |
| ---: | ---: | ---: |
| 1 | 0 | 0 |
| 2 | 12 | 15 |
| 3 | 46 | 46 |
| 4 | 35 | 26 |
| 5 | 17 | 9 |
| 6 | 4 | 20 |
| 7 | 2 | 13 |
| 8 | 5 | 13 |
| 9 | 7 | 3 |
| 10 | 1 | 1 |
| 11 | 0 | 1 |
| 12 | 2 | 0 |
| 13 | 0 | 0 |

Table C3.1.1. Input and effective samples sizes (number of fish measured) for the length composition data.

|  |  |  |  |  | MeaneffN/ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Fleet | mean_effN | mean(inputN*Adj) | HarMean(effN) | Mean(effN/inputN) | MeaninputN |
| BT | 148 | 151 | 148 | 0.98 | 0.98 |
| HL | 19 | 60 | 19 | 0.42 | 0.31 |
| SRT | 22 | 29 | 22 | 0.76 | 0.76 |
| TF | 60 | 105 | 24 | 0.59 | 0.57 |
| CPFV | 63 | 88 | 49 | 0.81 | 0.72 |
| RecOther | 411 | 730 | 241 | 0.70 | 0.56 |
| BayStudy | 46 | 88 | 18 | 0.59 | 0.53 |

Table C3.1.2. Root mean square error of the fit to the indices of relative abundance.

| Fleet | RMSE |
| :--- | ---: |
| BT | 0.52 |
| CPFV | 0.35 |
| BayStudy | 0.61 |
| SweptArea | 0.16 |

Table C3.3.1. Management quantities. MSY is the maximum sustainable yield in metric tons. B2011 is the spawning biomass at the start of 2011. B0 is the average spawning biomass in the absence of fishing (virgin spawning biomass). Bmsy is the spawning biomass corresponding to MSY. Fmult is the multiplier on the current fishing mortality (fishing effort) that would produce maximum sustainable yield.

|  | Base Model |
| :--- | ---: |
| MSY (mt) | 950 |
| B2011/BO | 1.22 |
| Bmsy/BO | 0.12 |
| B2011/Bmsy | 10.21 |
| Fmult | 36.76 |



Figure C1.6.1. Commercial catch north of Point Conception in metric tons by gear type.


Figure C1.6.2. Recreational catch north of Point Conception by fishing mode in thousands of fish.


Figure C2.1.1. Index of relative abundance for the CPFV logbook data for three sub-areas north of Point Conception.


Figure C2.2.1. Index of relative abundance for the trawl logbook data north of Point Conception.


Figure C2.3.1. Index of relative abundance for the Bay Delta Study data.


Figure C2.4.1. Commercial fishery average length compositions. (note years differ among fisheries and data types. Male and female data not included in combined and don not sum to one together)


Figure C2.4.2. Recreational fishery average length and weight compositions. (note years differ among fisheries and data types)


Figure C2.4.3. Bay Delta Study average length compositions. (note years differ among fisheries and data types and fish smaller than 10 cm are grouped at 10 cm .


Figure C3.1.1a. Fit of the model to the CPFV index of relative abundance.


Figure C3.1.1b. Fit of the model to the trawl logbook index of relative abundance


Figure C3.1.1c. Fit of the model to the Bay Delta Study index of relative abundance .

## Spawning biomass (mt)



Figure C3.2.1. Estimated spawning biomass.

Age-0 recruits (1,000s)


Figure C3.2.2. Recruitment estimates

Female ending year selectivity for BT


Figure C3.2.4a. Bottom trawl (BT) female selectivity.

Male ending year selectivity for BT


Figure C3.2.4b. Bottom trawl (BT) male selectivity.

Female ending year selectivity for RecPé


Figure C3.2.4c. CPFV female selectivity. (Also used for the "other" (non-CPFV) recreational fishery)


Figure C3.2.4f. CPFV male selectivity. (Also used for the other recreational fishery)


Figure C3.2.4g. Swept area trawl survey selectivity. Age is in years.


Figure C3.2.5. Estimated growth and variation of length-at-age (dashed lines).

Spawning depletion with $\mathbf{\sim 9 5 \%}$ asymptot


## Appendix: Fit to the length and age composition data.

Pearson residuals, female, retained, BT


Pearson residuals, male, retained, BT (n


Pearson residuals, sexes combined, retá


Pearson residuals, female, retained, HL


Pearson residuals, male, retained, HL (m


Pearson residuals, female, retained, SR1


Pearson residuals, male, retained, SRT (


Pearson residuals, sexes combined, retá


Pearson residuals, female, retained, TF 1


Pearson residuals, male, retained, TF (m


Pearson residuals, sexes combined, retc


Pearson residuals, sexes combined, rete


Pearson residuals, sexes combined, whc


Pearson residuals, sexes combined, retá


length comps, sexes combined, retaine

length comps, female, retained, aggreg:

length comps, male, retained, aggregat


