Data-Poor Stock Assessment and Fishery Management

Alec MacCall

NMFS/SWFSC Santa Cruz, CA

Why Are Some Fisheries Data-Poor?

- Monitoring is expensive and lacks "glamour"
- Monitoring has no political "payoff"
- Politicians prefer to fund "new" and "different"
- The data requirements for stock assessment are not related to stock size or value
- Requirements are the same for all stocks
- Assessment requires long-term information
- There is little value in short-term "targeted" studies
- Naturally, we monitor the big and valuable stocks
- Some stocks will always be too small to be worth monitoring

"Assessment-Resistant" Stocks

- Some stocks pose special problems
- They appear data-rich but are information-poor
- Nearshore coastal stocks
- Local variability, numerous local substocks, no mixing
- E.g., Blue rockfish, gopher rockfish
- Deepwater stocks
- Serial depletion of deepwater stocks
- E. g, Cowcod, Bronzespotted rockfish
- Climate-driven, and coastal migratory stocks
- Interdecadal environmental variability, transboundary
- E.g., White seabass, California sheephead, lobster

What is "Data-Poor Assessment"?

Contrast:

- Data-rich
- Inputs

Catches, comps, abundance indexes, survey estimates

- Outputs

Status quantities: current biomass (B), current fishing intensity (F),
population age structure, historical recruitment patterns
Management Reference Points
e.g., Bunfished, Bmsy, Fmsy, MSY, Catch at Fmsy

- Data-poor
- Inputs

Approximate catches, some life history information
Supplemented by "borrowed" parameters and/or data

- Outputs

Incomplete, imprecise status and some MRPs
Often as broad probability distributions, with no clear answer

"Data-Poor" requires a new attitude

 Glass is half-full, not half-empty- Data-rich thinking: Quantities being estimated are knowable-but without more data, we can't do anything
- Data-rich management expects a simple number
- Hidden problem: Conventional data-rich assessments severely under-estimate uncertainty!
- Data-poor thinking: Quantities are not precisely knowable, but given the possibilities based only on the data we have, what is a good policy?
- I intentionally did not say "What is the best policy?"
- Methods must show imprecision, not hide it
- This is a more sensible approach, even for data-rich
- Don't think of data-poor as a "dumbed-down" data-rich assessment
- It may work sometimes, but tends to limit your thinking

Principles of Data-Poor Assessment

- Get whatever data you can
- Information can be found in unusual places
- Find a way to use the data you have
- Adapt conventional models to unconventional data inputs
- Try out new models, test them against "known" cases
- Borrow information (prudently) as needed
- Prior parameter distributions, e.g., Bayesian analysis
- You can even borrow data from other assessments!
- Fishing effort is borrowable-this can work well if catch is known
- But "Indicator stocks" are unreliable—don't borrow abundance
- Explore the "what-if" possibilities thoroughly

Some Examples of Data-Poor Analyses and Assessments

- These are intended as example approaches, drawn from my own experience
- Some technical discussion is unavoidable
- But I will try to minimize it
- Topics:
- Data borrowing
- Prior parameter distributions
- Monte Carlo exploration
- Some new management approaches

Borrowing Data An example: Bronzespotted rockfish

- Extremely limited data
- Estimated landings dropped to nearly zero ca. 1990 (upper)
- This is 10 years earlier than the general west coast rockfish decline (lower)
- What happened?

Borrowing Data (cont.)

- Borrow effort (F) from the cowcod assessment
- Closely related fishery
- CPUE ($\mathrm{C}_{\text {brNz }} / \mathrm{F}_{\text {cow }}$) shows stability, then decline
- Use Leslie depletion model (CPUE vs. sumCatch)
- Model est. B_{2002} is 47 tons
- Compare with BRNZ seen in submersible survey for cowcod
- Survey est. B_{2002} is 68 tons
- Total catch was 900 tons from 1960s to 1980s
- This work is still in progress
- Estimate precision, etc.

What if we only know catches?

(and a little bit else, e.g., maximum age, age at maturity from a small sample)

- Conventional practice has been to use recent average catch, and apply an ad-hoc precautionary reduction (Restrepo et al. 1998)
- If we have an approximate catch history from the beginning of the fishery, we can do a lot better
- Depletion-Based Stock Reduction Analysis (DB-SRA)

How can we determine M ? Natural Mortality Rate

- Hoenig (1983) showed that estimates of M are closely related to maximum age
- We can get an M estimate (range) by aging a small number of fish
- Can be corrected for sample size
- We also learn about growth rates, age at maturity etc.

Relationship of Fmsy to M

- Walters and Martell's book: $0.6<$ Fmsy/M<1.0
- West Coast groundfish are at the low end of this range
- This may be regional
- East coast Fmsy/M > 1?
- Species groups differ
- Flatfish have higher relative Fmsy
- Now combine M and Fmsy/M to get Fmsy

- The distribution of Fmsy values reflects the two input distributions

The Production Function

- The combination of assumed M and assumed Fmsy/M gives an assumed Fmsy
- The diagonal green line is catch at Fmsy
- Assume Bmsy occurs at a specified fraction of Bunfished
- The vertical red line (here at 0.3)
- Intersection is MSY, Bmsy
- The only remaining unknown is Bunfished
- Based on our assumed inputs, we already "know" 2 out of 3 parameters of the production function

Depletion-Based Stock Reduction Analysis

Final Step: Estimate $\mathrm{B}_{\text {unfished }}$

- Given historical catches, solve for the value of Bunfished so that ending biomass is at the assumed depletion
- Discard cases where biomass goes negative (case shown by dotted line)
- Discard any other cases that cannot hit the target

Example: Canary rockfish
dark line is from data-rich assessment
(Note: assumed end-point depletion is different:
DB-SRA used 0.4, assessment was 0.24)

How Does DB-SRA Perform?

- Test 28 data-rich assessments
- All cases assume depletion to 0.4
(Note: if truly data-poor, we would not know value, our default=0.4)
- DB-SRA gives a full suite of MRPs (but some are more useful than others)
- e.g., MSY agrees with data-rich
- Main purpose is to advise on current yields

- Some cases of overestimation
- As for DCAC, correction factors for "rebuilding species" can be developed
- Lightly fished species (above 0.4)
- Low risk for these cases

Example DB-SRA Output - Rougheye rockfish

Even when we assume the stock is healthy ($B=40 \%$ ofBunfished), 75% of the model draws say we are overfishing (F>Fmsy)

Data-Poor Management

- Our management systems tend to assume datarichness, and may not be well suited for datapoor fisheries
- US now requires setting Annual Catch Limits on everything
- Widespread interest in an ecosystem approach presumes data-rich capabilities
- Is a data-poor ecosystem approach even possible?
- We need to develop (and allow) data-poor management systems
- This may require taking some risks
- Open access (including recreational) is a problem for data-poor management
- The less you know, the more restrictive you have to be

Management Without Stock Assessments

