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Bighorn sheep (Ovis canadensis) in the Peninsular Ranges of 

California, USA, were listed as an endangered population by 
the United States Fish and Wildlife Service (USFWS) in 

1998, and protection, acquisition, and restoration of habitat 
were identified as key components of recovery strategies 
(USFWS 2000). Bighorn sheep in the Peninsular Ranges 
live in close proximity to some of the fastest growing 
communities in the United States, making bighorn sheep 
vulnerable to habitat loss, modification, and fragmentation. 
Distribution of this population is unique in relation to many 

bighorn sheep populations in that it tends to be restricted to 

low elevations, typically < 1,400 m (Jorgensen and Turner 

1975), resulting in use of a narrow north-south band of 
habitat vulnerable to fragmentation and urban encroach 

ment. In addition, proximity to large metropolitan 
areas 

such as San Diego, Los Angeles, and Palm Springs creates a 

demand for recreation, mining, and other human activities 

within areas inhabited by bighorn sheep. Habitat delinea 
tion is, therefore, important 

to many of the strategies 
outlined by the USFWS Recovery Plan. 

Habitat models have been developed to predict or rate 

suitability of bighorn sheep habitat in other mountain 

ranges (e.g., Holl 1982, Armentrout and Brigham 1988, 

Cunningham 1989, Dunn 1996). However, models devel 

oped to predict habitat in one mountain range may perform 
poorly when used to predict habitat suitability in another 

(Cunningham 1989, Andrew et al. 1999). Turner et al. 

(2004) developed a habitat model specifically for bighorn 
sheep in the Peninsular Ranges, but their model was found 

to have methodological shortcomings that negated its 

usefulness for predicting bighorn sheep habitat (Oster 
mann-Kelm et al. 2005). The USFWS Recovery Plan for 

this population presented a rule-based model specifically 

designed for this population, guided by expert knowledge of 

bighorn sheep in the Peninsular Ranges, to delineate 

essential habitat (USFWS 2000). That model was based 

primarily on topography (i.e., including areas within 800 m 

of slopes of >20%) and vegetation (i.e., using chaparral 
vegetation associations as the basis for upper elevational 

boundaries; USFWS 2000). 

Although expert-based approaches have been effectively 
used for model building and conservation planning (Cle 

venger et al. 2002, MacMillan and Marshall 2006), the 

expert-based model developed for the Peninsular Ranges has 
not been comprehensively and analytically compared to 

models based on occurrence data, and it has been criticized 
for being qualitative and not repeatable (Turner et al. 2004). 

We used 2 statistical methods and computer-aided habitat 

modeling techniques to develop and evaluate models of 

bighorn sheep habitat in the Peninsular Ranges in 

California. Our objectives were to 1) develop models with 

2 quantitative methods, 2) assess and compare predictive 
power of these models, and 3) compare these results with 

the existing expert-based model. 

STUDY AREA 
The Peninsular Ranges are part of the Colorado Desert 

division of the Sonoran Desert (Ryan 1968, Dimmitt 2000; 

Fig. 1). Bighorn sheep were distributed in approximately 8 

subpopulations that inhabited, from north to south, the San 

Jacinto Mountains, the Santa Rosa Mountains northwest of 
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Figure 1. The study area (thick grey line) used to develop predictive 
habitat models for bighorn sheep in the Peninsular Ranges, California, 
USA, based on data collected during 2001-2003. Six elevation categories 
are shown. 

State Highway (Hwy) 74, the Santa Rosa Mountains 
southeast of Hwy 74, Coyote Canyon, the north San Ysidro 

Mountains (N of County Road S-22), the south San Ysidro 
Mountains (S of County Road S-22), the Vallecito 

Mountains, and Carrizo Canyon (Rubin et al. 1998). These 

subpopulations 
were connected via male movement and, to a 

lesser extent, by occasional movement of female bighorn 
sheep (DeForge et al. 1997, Rubin et al. 1998). 

Bighorn sheep are native to the Peninsular Ranges and 

only the 2 northernmost subpopulations were augmented 
with animals raised in captivity (Ostermann et al. 2001). In 
the Peninsular Ranges, bighorn sheep typically inhabited 
arid canyons, slopes, washes, and alluvial fans, and were 

most frequently found at elevations < 1,400 m (Jorgensen 
and Turner 1975). Bighorn sheep inhabited a narrow north 
south band of habitat bordered on the west by densely 
vegetated chamise (Adenostoma fasciculatum)-dommated 
chaparral and on the east by the flat Coachella and Imperial 
Valleys (USFWS 2000). Vegetation associations in the 

study area are described in Rubin et al. (1998). Tempera 
tures in the study area often reached 46? C in summer, and 

winters were mild, with temperatures occasionally <0? C. 

Annual rainfall was variable, with maximums of 4.2 
39.9 cm (median 

= 13.9 cm) during 1962-2004 (National 
Oceanic and Atmospheric Administration 2006). Land 

ownership in the northern part of the study 
area was 

primarily a mix of private, Tribal, State, and Federal land 

jurisdictions (USFWS 2000). In the south, Anza-Borrego 
Desert State Park (ABDSP) provided protection for 

approximately 243,000 ha (USFWS 2000); however, urban 

development and other land use activities, including off 
road vehicle use and mining, threatened bighorn sheep 
habitat throughout the range. 

METHODS 
Relocation Data 

We used 2 sets of bighorn sheep relocation data for this 

project. The first, which we call the GPS data, was collected 

during October 2001-November 2003, when animals were 

collared with Global Positioning System (GPS) collars 

(Televilt GPS-Simplex ; TVP Positioning AB, Bandyga 
tan, Sweden) for habitat and behavior studies in 5 of the 8 

subpopulations. All field procedures were approved by the 

Zoological Society of San Diego's Institutional Animal Care 
and Use Committee and USFWS Section 10(a)(1)(A) 

permit (no. TE047253-0). 
We used 16,064 daytime GPS relocations (Vallecito 

Mountains: 1,319; San Ysidro Mountains: 7,392; Coyote 
Canyon: 3,627; Santa Rosa Mountains SE of Hwy 74: 

3,726) from 34 animals (Vallecito Mountains: 2 M, 1 F; San 
Ysidro Mountains: 6 M, 10 F; Coyote Canyon: 3 M, 4 F; 
Santa Rosa Mountains SE of Hwy 74: 5 M, 3 F). Although 
our original GPS data set included day and night 
relocations, we used only daytime relocations for develop 
ment of our models. An examination of GPS data and 

previous studies (e.g., Krausman et al. 1985) indicated that 

bighorn sheep exhibited limited activity at night. Although 
nocturnal habitat selection likely differs from diurnal habitat 

selection, it is likely that nocturnal habitat is a subset of 
diurnal habitat and that inclusion of nighttime locations 
could possibly have resulted in a model influenced 

unnecessarily by the more geographically static and 
restricted nighttime locations. For our analysis, we used 2 

randomly selected daylight relocations > 4 hours apart/24 
hour period for each animal, because an examination of GPS 
data indicated that animals were able to traverse their home 

ranges within this period. 
Our second data set, which we call the non-GPS data, 
included relocations of radiocollared animals tracked on the 

ground and via aerial telemetry and uncollared animals 
observed during waterhole counts, foot surveys, and 

opportunistic sightings. This data set, which spanned 
multiple years (1940-2000 with most data collected post 
1990) and includes 21,632 detections of males and females 

representing all 8 subpopulations, is depicted in the USFWS 

Recovery Plan for this population (USFWS 2000). For our 

analysis, we used only data collected southeast of Hwy 74, 

represented by 7,503 relocations, because bighorn sheep 
distribution north of the highway was altered by habitat loss 
and urban development (Rubin et al. 2002, Ostermann 
Kelm et al. 2005). Of this subset, 3,388 relocations were 

collected via direct observation during studies conducted 

during 1993-2000, and included relocations of 154 animals 
collared with very high frequency collars and representing 6 
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subpopulations (Rubin et al. 1998, 2000, 2002; Boyce et al. 

1999; Hayes et al. 2000). 
We used non-GPS data from all 8 subpopulations to 

delineate our 
study 

area because GPS data were not available 

for all 8 subpopulations. Because the number of animal 

locations varied extensively among areas due to different 

study objectives and monitoring intensities, we generated a 

95% fixed-kernel utilization distribution (UD; Worton 

1989) for each of the 8 subpopulations and merged them 
to form a collective UD. The construction of individual UDs 

followed by subsequent merging avoided the problem of 

artificially skewing the UD towards subpopulations with 

disproportionately large 
occurrence data sets. We then 

buffered the resulting single polygon by 15 km to produce 
our overall range-wide study 

area. We assumed that a buffer 

of 15 km would provide the model with the necessary range 
of habitat types both used and unused by bighorn sheep in 

the Peninsular Ranges and would, based on observations 
and a literature review of bighorn sheep 

movement patterns 

(e.g., Schwartz et al. 1986), also be within colonization 
distance of known bighorn sheep locations. Our study area 

encompassed 7,873 km2 (787,300 ha) and included areas 

occupied by bighorn sheep, as well as areas not believed to 

be occupied (Fig. 1). 

Modeling Methods 

Bighorn sheep in the Peninsular Ranges of southern 
California declined to precariously low numbers in recent 

years (with the population estimated to include 276 animals 
in 1996; USFWS 2000), and some historically occupied 
areas have not been inhabited in recent years (Rubin et al. 

1998). In addition, desert bighorn sheep are wide-ranging 
with large home ranges, and only 

a 
sample of animals was 

monitored with GPS collars. It was, therefore, difficult to 

separate true absences, where bighorn sheep truly did not 

occur, from false absences, where bighorn sheep did occur 

but were not recorded or where they occurred only during 
some periods. False absences can cause considerable bias in 

models designed to evaluate or predict habitat use (Hirzel et 
al. 2002?z, Gu and Swihart 2004, Keating and Cherry 2004). 
For these reasons, we chose presence-based modeling 
methods that did not make strict assumptions about 
absences. 

We used Ecological Niche Factor Analysis (ENFA) 

implemented in the Program BioMapper (Hirzel et al. 

2002?z, b), and Genetic Algorithm for Rule-set Production 

(GARP) implemented in the Program Desktop GARP 

(Stockwell and Noble 1992, Stockwell and Peters 1999). 
Both approaches, previously used to predict distribution of a 

wide range of species in diverse environments (e.g., Illoldi 

Rangel et al. 2004, Santos et al. 2006, Kostelnick et al. 2007, 

Jaqui?ry et al. 2008, Skov et al. 2008), are based on 

ecological niche theory (Hutchison 1957) and recognize that 
a certain multidimensional set of environmental conditions 

must exist to allow for a species' presence. Although using 
different methods, both programs evaluate species 

occur 

rences (presence data) in relation to characteristics of the 

background matrix of environmental characteristics, which 

can be characterized by 
numerous habitat parameters called 

eco-geographical variables (Hirzel et al. 2002?z). The 

methods use these relationships to predict the set of 
conditions under which the species is expected 

to occur. 

The ENFA evaluates the distribution of each eco 

geographical variable (e.g., slope or elevation) in cells used 

by the species in relation to the distribution of each variable 
within the study area to generate 2 statistics. For each 

variable, it compares the mean value in cells used by the 

species and the global mean across the study area to identify 
the marginality of the species. In addition, ENFA compares 
the variance of each variable in cells used by the species with 
the variable's variance across the study 

area to generate an 

index of specialization (Hirzel et al. 2002?z). Factor analysis 
is used to extract combinations of variables that are most 

important in determining a species' marginality and 

specialization. The ENFA generates scores for each cell by 
weighting each cell by corresponding marginality and 

specialization values (Hirzel et al. 2002a, b). The combina 
tion of scores for all variables is used to generate an overall 

suitability index for each focal cell, with ratings ranging 
from zero to one (Hirzel et al. 2002?z). Although Hirzel et 

al. (2002?z) call these suitability ratings, we call them 

frequency-of-use ratings because the ratings also indicate a 

relative frequency of use (of a particular habitat type). 
The GARP is a machine-learning approach that uses 

presence data to find the best set of rules to explain how a 

species is distributed on the background matrix of eco 

geographical variables. Through an iterative process, GARP 
evaluates a series of decision rules and algorithms (e.g., 

logistic regression, bioclimatic rules) to generate the best set 

of variable criteria that explain how species locations are 

distributed on the landscape. Rules are tested using available 

presence data, modified, incorporated, or rejected through 
thousands of iterations until the best set of variable 
conditions most accurately predicting the species' distribu 
tion is determined. These rules define the parameters that 
are then collectively mapped using Geographic Information 

Systems (GIS) to predict the geographic distribution of the 

species of interest (Peterson and Vieglais 2001). More 
detailed descriptions of GARP methods are available in 
Stockwell and Peters (1999) and Payne and Stockwell (no 
date). 

We generated GIS data-layers for 17 eco-geographical 
variables believed to possibly influence distribution of 

bighorn sheep (Table 1). We used ArcGIS 9.0 to determine 

slope, elevation, and aspect for each cell of the study area, 

using a 30-m cell resolution. Because Biomapper does not 

accept categorical variables and aspect measurements are 

problematic due to the circular nature of the degree 
measurement, we used incident radiation as a surrogate for 

aspect. Incident radiation is similar to a heat load index, 
which rescales aspect to a scale of zero to one, and is 

symmetrical around a northeast-southwest axis, with a value 

of zero representing the coolest aspect (NE) and a value of 
one 

representing the warmest aspect (SW; McCune and 

Keon 2002). Measures of incident radiation additionally 
incorporate latitude and slope information, with steeper 
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Table 1. Eco-geographic variables included in development of predictive habitat models for bighorn sheep in the Peninsular Ranges, California, USA, based 
on data collected during 2001-2003. 

Eco-geographic variable Description 

Slope (%) of individual 30-m2 pixel.a 
Shortest distance (m) from every 30-m pixel to a pixel with slope of > 60% (we Box-Cox-transformed data after we 

added 15 m to all values due to presence of zero values). 
Elevation (m) of individual 30-m pixel.a 
Index of ruggedness over a 150 m X 150 m area (22,500 m ) centered on each 30-m pixel. 
Shortest distance (m) from every 30-m pixel to a pixel with ruggedness of > 0.02.a 

Shortest distance (m) from each 30-m" pixel to water sources (e.g., springs, streams) available yr-round in > 75% of 

yr, based on local biologist knowledge.21 
Distance to water (best scenario) Shortest distance (m) from each 30-m" pixel to water sources (e.g., springs, streams) available yr-round in >25% of 

yr, based on local biologist knowledge, and those that have unknown status.a 

Slope 
Distance to >60% slope 

Elevation 

Ruggedness 
Distance to ruggedness >0.02 

Distance to water (conservative) 

Incident radiation 

Distance to roads 

Distance to forest 

Distance to hardwood woodland 

Distance to conifer woodland 

Distance to shrub (including 

chaparral) 
Distance to desert shrub 

Distance to desert woodland 

Distance to urban or agriculture 
Index of vegetation cover 

Index of incident radiation at each 30-m pixel.2 
Shortest distance (m) from each 30-m pixel to paved roads.a 

Shortest distance (m) from each 30-m pixel to the nearest pixel classified as California Wildlife Habitat 

Relationships (CWHR) conifer or hardwood forest.a 

Shortest distance (m) from each 30-m pixel to the nearest pixel classified as CWHR hardwood woodland.a 

Shortest distance (m) from each 30-m pixel to the nearest pixel classified as CWHR conifer woodland.a 

Shortest distance (m) from each 30-m2 pixel to the nearest pixel classified as CWHR shrub.a 

Shortest distance (m) from each 30-m2 pixel to the nearest pixel classified as CWHR desert shrub.a 

Shortest distance (m) from each 30-m pixel to the nearest pixel classified as CWHR desert woodland.a 

Shortest distance (m) from each 30-m pixel to the nearest pixel classified as urban or agriculture. 
Normalized difference vegetation index; reflectance based on satellite data.a 

a 
We Box-Cox-transformed data. 

slopes being warmer (McCune and Keon 2002). We 

calculated a ruggedness index for each cell at the scale of 
150 X 150 m (5 X 5 30-m2 cells) following methods 

developed by Sappington et al. (2007). This index ranges 
from zero to one, with a value of one indicating the highest 
ruggedness. In addition, a second eco-geographical variable, 

Distance to ruggedness > 0.02, was calculated by measuring 
the shortest distance from each cell to the closest cell with 

ruggedness >0.02. We chose the value 0.02 based on a 

visual examination of GPS locations mapped relative to 

ruggedness values, which suggested that sheep locations 

tended to be associated with cells with a ruggedness index 
>0.02. 

For the variable Distance to water, we identified all known 
water sources (based on existing maps and data sets, our 

knowledge of the area, and input from local biologists), and 

grouped them into 4 categories: sources that would provide 
bighorn sheep with water year-round during 1) >75% of 

years, 2) 25-75% of years, 3) <25% of years, and 4) sources 

whose status and reliability 
were unknown. Because of 

uncertainties about the relative importance of these water 

categories to bighorn sheep, we ran each model 2 ways; first 

using only water sources in category 1 (hereafter Conser 

vative water) and then including water sources in categories 

1, 2, and 4 (hereafter Best scenario water). 
For land-cover data we used the Multi-source Land Cover 

Data (2002 v2) produced by the California Department of 

Forestry and Fire Protection. Using California Wildlife 

Habitat Relationship classes (California Department of Fish 

and Game 2009), we identified 7 vegetation and non 

vegetated land-cover categories (Table 1). Although a more 

detailed vegetation data layer was available for ABDSP, our 

analysis required a vegetation layer that spanned the entire 

study area. We calculated distance from each cell in the 

study area to the nearest cell representing each of the 7 land 
cover 

categories. 

Model Development, Evaluation, and Selection 
We used only GPS data for model development because 
non-GPS data had varying levels of precision and accuracy, 
were obtained according to multiple study protocols not 

necessarily designed for a habitat use study, and were 

possibly biased by the ability of field biologists to locate 
animals equally well in all terrain. We combined GPS data 
from 5 subpopulations (one in the Santa Rosa Mountains 
SE of Hwy 74, one in Coyote Canyon, 2 in the San Ysidro 

Mountains, and one in the Vallecito Mountains) for model 

development and training. Although Biomapper and GARP 
both incorporate internal methods of model testing, we 

randomly selected and held aside 30% of GPS data to 

evaluate resulting models, and used the remaining 70% for 
model development. 

For ENFA models, we ran Biomapper with all eco 

geographic variables included, and we used the geometric 
mean algorithm for calculating habitat suitability (Hirzel 
and Alettaz 2003). We used McArthur's broken-stick model 
as a guide for choosing the number of factors to be used in 

developing the predictive habitat model (Hirzel et al. 

2002$). Program Biomapper evaluated the predictive power 
of the resulting suitability maps using the ?-fold cross 

validation process described by Boyce et al. (2002). For this 

analysis Biomapper uses all data available; however, animal 

locations are randomly partitioned into k identically sized 
data sets (10 partitions in our study) and k ? 1 sets are used 
to compute a suitability map and the remaining data set is 

used to validate the map. The process is repeated k times, 
with each of the k subsets left out one at a time. Predictive 

power is evaluated by evaluating the relationship between 
observed and expected number of validation points at 
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different habitat suitability values (Hirzel et al. 2006). We 

used the continuous Boyce index, with window size set at 20 
for all model validations (Hirzel et al. 2002?). 

In GARP, we used the same set of eco-geographic 
variables used in the ENFA analysis and allowed the model 
to consider all rule types (atomic, range rules, negated range 
rules, and logistic regression; Payne and Stockwell [no 
date]). Within GARP, occurrence data were divided evenly 
into training and intrinsic testing data, which were used for 

developing and testing rules, respectively. We ran 1,000 
iterations (or until the model converged), and we iterated 

GARP 700 times to produce 700 models. Because of the 
stochastic nature of GARP algorithms, every model 

generated by GARP is unique, even when the same training 
data are used. Using guidelines presented by Anderson et al. 

(2003), we selected a best subset of 20 models by first 

choosing all models with intrinsic and extrinsic omission 
error <10% and then choosing the 20 models with 
commission error closest to the median commission error. 

We then combined this best subset of 20 models to predict a 

range-wide distribution, with a relative likelihood of 

presence rating of 0 to 20 (hereafter likelihood-of-presence 
categories) assigned to each cell in the study area, based on 

the number of models predicting presence in each cell 

(Anderson et al. 2003, Drake and Bossenbroek 2004). 
Models based on true 

presence-absence data can be 

evaluated by methods such as a confusion matrix (Fielding 
and Bell 1997). However, these methods are problematic 

when models are based on 
presence-only data, because 

absences are not available for testing model predictions 
(Anderson et al. 2003). Although Programs Biomapper and 

GARP facilitate comparison of models derived within each 

program, we held back 30% of our data so that we could 

compare models derived by different methods using a suite 
of evaluation methods. We used a 

goodness-of-fit 
test 

(Sokal and Rohlf 1995) to test whether the 30% test data 
were distributed among habitat rating categories as 

predicted by the model. For this analysis, we used 5 

equal-sized categories based on 
frequency-of-use and 

likelihood-of-presence assigned by ENFA and GARP, 

respectively, with expected values derived from the distri 
bution of training data in each category. For evaluation and 

comparison of ENFA models, we also examined continuous 

Boyce indices generated by Program Biomapper. For GARP 

models, we evaluated how test data were distributed among 
the 20 likelihood-of-presence ratings in each model, by 
examining density of test data (locations/km ) in each 

category, with the expectation that the highest rating (those 
areas identified as habitat by all 20 best subset models) 
should have the highest density of test locations. Finally, we 
also used receiver-operator characteristic (ROC) analysis 
(Hanley and McNeil 1982, Chen et al. 2007), implemented 
in a web-based calculator (J. Eng, John Hopkins University, 
http://www.jrocfit.org, accessed 26 May 2009), to evaluate 
ENFA and GARP models. The ROC analysis has been 
used to assess accuracy of predictive habitat models, by 

comparing test data to the predicted distribution of habitat 

ratings (Wiley et al. 2003, Iguchi et al. 2004, Chen et al. 

2007). The ROC analysis is used to test sensitivity (absence 
of omission error) and specificity (absence of commission 

error) of the predicted habitat, in relation to its ability to 

successfully predict presence of test data (Wiley et al. 2003, 

Iguchi et al. 2004, Chen et al. 2007). The ROC scores are 

maximized when all test data fall into areas predicted as 

habitat by all models, giving a ROC score of 1.0, and are 

minimized when test locations are as likely to fall into 

predicted habitat as non-predicted habitat (a score of 0.50 
indicates a random distribution relative to predicted 
habitat). 

Initially, we developed separate models for males and 
females because male and female bighorn sheep are known 
to use habitat differently (Bleich et al. 1997). After we 

evaluated models, we chose the best male and female models 

(within ENFA and GARP) and merged them to produce a 

final sexes-combined ENFA model and a final sexes 

combined GARP model. We merged sex-specific models by 
selecting the higher of the 2 (M vs. F) frequency-of-use and 

likelihood-of-presence categories in ENFA and GARP, 

respectively, for each cell. Although male and female 

bighorn sheep use habitat differently (e.g., Bleich et al. 

1997), our intent was not to identify sex-specific habitat 

needs, but rather to delineate an overall inclusive habitat 

delineation, which requires habitat for both males and 
females. 

Using the 30% test data, we evaluated and compared how 
well these 2 models and the expert-based model predicted 
habitat use in the large portion of the range southeast of 

Hwy 74. Because our GPS data set only represented habitat 
use during a 2-year period, we also evaluated the 3 models 
with non-GPS data (SE of Hwy 74) that encompassed more 

years of data (1940-2000 with most locations collected 

post-1990 ) and represented habitat use across a wider range 
of environmental conditions and population sizes. We 

compared the 3 models by examining the proportion of 
the 30% test data and non-GPS data located in predicted 
habitat. However, because a model predicting the entire 

study area as habitat (and likely not a very accurate model) 
would rate high in this respect, we also evaluated this 
measure in relation to the overall extent of predicted habitat, 

by creating a ratio of the proportion of test data located 
within predicted habitat to the overall size of the predicted 
habitat (indicating possible errors of commission). A larger 
value suggests a better model. 

RESULTS 
All 4 ENFA models (2 using the Conservative water 
variable and 2 using the Best scenario water variable, with a 

separate model for M and F in each case) had good fit 

according to the continuous Boyce index, with the index 

approaching its maximum value and having small standard 
deviations in all cases (Table 2). The ROC values also 
indicated a good fit of the 4 models, with values > 0.78 in 
all cases. Goodness-of-fit tests revealed no difference 
between distribution of observed (test) and predicted 
distribution among frequency-of-use categories for male 

models, suggesting that both male models had good 
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Table 2. Continuous Boyce Index and receiver-operator characteristic (ROC) values for Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm 
for Rule-set Production (GARP) habitat models for bighorn sheep in the Peninsular Ranges, California, USA, based on data collected during 2001-2003 

(CW 
= Conservative water, BSW = Best scenario water). 

Model 

ENFA model GARP model 

Test data Boyce Index Boyce Index SD ROC area ROC area SD ROC area ROC area SD 

M, CW 

M, BSW 

F, CW 

F, BSW 

M 

M 

F 

F 

0.974 

0.978 

0.996 

0.996 

0.022 

0.024 

0.003 

0.003 

0.785 

0.842 

0.877 

0.876 

0.005 

0.004 

0.002 

0.003 

0.878 

0.875 

0.895 

0.927 

0.003 

0.003 

0.011 

0.013 

predictive power (Table 3). Although male models devel 

oped with Conservative water and Best scenario water 

performed similarly, slightly higher ROC and Boyce Index 
values suggested that the model developed with the Best 
scenario water had slightly better predictive power than the 

model developed with Conservative water (Table 2). When 
we compared female models developed with different water 

variables, we observed little difference in ROC and Boyce 
Index values (Table 2). However, goodness-of-fit tests 

indicated that distribution of test data among frequency 
of-use categories differed significantly (P 

= 
0.009; Table 3) 

from the expected distribution when we used the Best 
scenario water variable. We therefore chose the male model 

created with the Best scenario water variable and the female 
model developed with the Conservative water variable as our 

best male and female models and merged these 2 models as 
our best ENFA model for sexes combined. 
All 4 GARP models (2 using the Conservative water 

variable and 2 using the Best scenario water variable, with a 

separate model for M and F in each case) had good fit 

according to ROC values (>0.87 in all cases; Table 2). 
Goodness-of-fit tests indicated that all 4 GARP models fit 
the data, with no significance between observed (test) and 

expected distributions (Table 4). The male model developed 
with Best scenario water tended to have higher predictive 
power, whereas female models developed with the 2 water 

variables had similar goodness-of-fit (Table 4). The ROC 
values were similar for both male models but suggested that 

the female model developed with the Best scenario water 

variable had better predictive power (Table 2). We therefore 

chose models developed with the Best scenario water 

variable as our best single-sex GARP models, and we 

merged these models to produce our best single (sexes 
combined) GARP model. 
Goodness-of-fit tests of the final male and female models 

suggested that GARP models had better predictive power 
than ENFA models, based on test results for the best female 
ENFA model (developed with the Conservative water 

variable), which tended to approach significance (P 
= 

0.078; Tables 3, 4). In addition, ROC scores were slightly 
higher for GARP models (Table 2). When we plotted the 
30% GPS test data on the final sex-specific GARP maps, 
most test locations fell within areas predicted as habitat by 
all of the 20 models in the best-subset of GARP models 

(Fig. 2). For males, test data fell into all likelihood-of 

presence categories, with density of locations increasing 
as 

likelihood-of-presence increased (Fig. 2A). For females, 

only some test data fell into the lower categories and most 
test data fell into areas predicted by all 20 best-subsets 

models (Fig. 2B). 
When we compared our final sexes-combined ENFA 

model, GARP model, and expert-based model, we found 
that the ENFA model predicted the largest habitat extent 

and the expert-based model predicted the smallest extent 

(Table 5; Figs. 3 and 4). The areas predicted by each of the 
models encompassed > 98.99% of the 30% test GPS data 
and the non-GPS data, and the expert-based model 

captured these test data in the smallest area (Table 5; 

Fig. 5). Visually, the GARP and expert-based models were 

most similar, whereas the ENFA model tended to predict 
habitat extending farther west than the other 2 models 

(Figs. 3, 4). 

Table 3. Expected and observed number of test data falling within each frequency-of-use category predicted by Ecological Niche Factor Analysis models of 

bighorn sheep habitat in the Peninsular Ranges, California, USA, based on data collected during 2001-2003 (CW 
= Conservative water, BSW = Best 

scenario water). 

Frequency-of-use categories (expected:observed) 

Model Testdataa 0 1-20 21-40 41-60 61-80 81-100 x df P 

M, CW M 9:7 371:365 368:365 370:372 370:391 366:354 2.16 5 0.826 
M, BSW M 9:10 370:368 371:380 373:355 368:359 362:381 2.43 5 0.788 
F, CW F 14:17 588:575 591:582 595:627 595:543 589:628 9.92 5 0.078 
F, BSW F 14:16 588:576 593:570 592:643 597:536 587:630 15.19 5 0.009 

a 
Test data used for goodness-of-fit test. 
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Table 4. Expected and observed number of test data falling within each likelihood-of-presence category predicted by Genetic Algorithm for Rule-set 

Production models of bighorn sheep habitat in the Peninsular Ranges, California, USA, based on data collected during 2001-2003 (CW 
= Conservative 

water, BSW = Best scenario water). 

Likelihood-of-presence categories (expectediobserved) 

Model Testdataa 0 1-4 5-8 9-12 13-16 17-20 %2h df P 

M, CW M 22:28 66:78 42:40 56:42 65:53 1,602:1,612 9.69 5 0.085 
M, BSW M 14:18 58:61 43:46 64:51 70:75 1,604:1,602 4.51 5 0.479 

F, CW F 2:0 5:2 4:4 5:3 15:14 2,940:2,948 3.19 3 0.364 
F, BSW F 3:0 6:3 3:5 6:4 12:7 2,941:2,952 3.60 3 0.308 

a 
Test data used for goodness-of-fit test. 

b 
Categories were collapsed as necessary, to avoid expected values <5. 

DISCUSSION 
Our assessment indicated that ENFA and GARP models 
both produced meaningful predictions of bighorn sheep 
habitat in the Peninsular Ranges, but that GARP models 
tended to have higher predictive power. This pattern was 

also observed by Tsoar et al. (2007) in a comparison of 6 

modeling methods, in which GARP showed a small 

(though statistically significant) advantage over ENFA in 

predictive accuracy. The ability of both methods to produce 
meaningful predictions is consistent with the conclusion of 
Elith et al. (2006) that use of presence-only data was an 

effective means of predicting species distributions. In their 
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Figure 2. Distribution of (A) male and (B) female 30% Global Positioning 

System test data across 20 likelihood-of-presence categories predicted by 
Genetic Algorithm for Rule-set Production (GARP) models for bighorn 
sheep in the Peninsular Ranges, California, USA, based on data collected 

during 2001-2003. Categories 0-20 indicate how many of the 20 best 
subsets GARP models predicted a particular pixel as habitat. 

comparison of 16 modeling methods (which did not include 

ENFA), Elith et al. (2006) concluded that more recently 
developed models (e.g., 

max. entropy models and a new 

open modeler implementation of GARP) may produce even 
more accurate results than GARP implemented in Program 
DesktopGARP. However, Tsoar et al. (2007) and Elith and 

Burgman (2002) concluded that model performance may be 
influenced by species distributional characteristics, and that 
this could account for considerable differences in model 

performance. 
Our model evaluations based on ROC values and 

continuous Boyce indices showed that all 4 sex-specific 
ENFA models provided useful predictions, but the slightly 
higher ROC values of the GARP models suggested they 
provided better predictions (Table 2). Goodness-of-fit tests 
indicated that ENFA models had lower predictive power for 
females than for males, possibly because habitat use by 
female bighorn sheep is more restricted than that of males 

(Bleich et al. 1997), and consistent with the suggestion that 

species distributional characteristics may influence model 

performance. Based on goodness-of-fit tests, GARP models 
were able to predict female habitat use patterns more 

effectively than were ENFA models (Tables 3, 4). Never 

theless, goodness-of-fit tests did not reveal a difference 
between expected and observed distributions among habitat 
classes in our final male and female ENFA models, and we 

therefore merged the sex-specific models to produce the 
final sexes-combined ENFA model for comparison with the 
final sexes-combined GARP model and the expert model. 
All 3 sexes-combined models (ENFA, GARP, and the 

expert model) captured nearly all ( > 98%) of the 30% test 
data and the non-GPS data within predicted habitat, 

indicating that omission errors were low for all models. 
Omission errors represent false negatives, areas where the 

model predicts 
no use where use 

actually 
occurs. In contrast, 

commission errors, or false positives, represent areas where 

the model predicts presence but the species is not present in 
these areas (Anderson et al. 2003). The final ENFA model 

predicted the largest overall habitat extent. Although the 
size of predicted habitat does not indicate habitat quality, 
this size difference suggested that commission error could 

potentially be greatest in the ENFA model. 
We depicted habitat classes (frequency-of-use classes for 
ENFA and likelihood-of-presence classes in GARP) in 5 

categories. Rather than implying any biological cut-points 
among habitat classes, we used these categories simply for 
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Table 5. Comparison of sexes-combined Genetic Algorithm for Rule-set Production (GARP), Ecological Niche Factor Analysis (ENFA), and expert 
opinion models developed for bighorn sheep in the Peninsular Ranges, California, USA, based on data collected during 2001-2003 (GARP and 
ENFA models). 

Proportion of 30% Global Ratio of proportion of Proportion of non- Ratio of proportion of 

Positioning System (GPS) 30% GPS data located GPS data located non-GPS data located 
Total predicted test data located within within predicted area to within predicted within predicted area to 

Model habitat area (km2)a predicted areab total predicted areab areab total predicted area 

ENFA (final M 
and F models 

merged) 4,315.48 0.993 
GARP (final M 

and F models 

merged) 3,728.00 0.999 

Expert-based 
model (for M 
and F) 3,166.99 0.999 

0.00023 0.990 0.00023 

0.00027 0.997 0.00027 

0.00032 0.997 0.00031 

a 
For ENFA and GARP models, this includes all pixels with rating >0. b 
Areas and data NW of Highway 74 were excluded from this analysis. 

analysis and map-representation purposes. However, most 

areas predicted as habitat by GARP fell into the highest 
GARP category, indicating that model prediction was 
consistent for these areas (Fig. 4). Most areas predicted as 
habitat by the expert-based model were also scored as the 

highest GARP category. Most female GPS test locations 
fell into the highest category, but male test data, although 

Figure 3. Habitat predicted by Ecological Niche Factor Analysis (ENFA) 
for male and female bighorn sheep (sexes combined) in the Peninsular 

Ranges, California, USA, based on data collected during 2001-2003. Five 

frequency-of-use categories are shown. The study area is indicated with a 

thick grey line and the expert-based model boundary is shown as a red 
dashed line. 

also falling primarily into the highest category, were 
distributed more widely across lower categories (Fig. 2). 
This pattern is consistent with sex-based habitat use 

differences, with males using a wider range of habitats than 
females (Bleich et al. 1997), and provides further support for 
the GARP model. 

Although GARP models tended to have stronger 
predictive power, models developed with ENFA had good 
predictive power based on continuous Boyce indices. The 
ENFA model predicted a larger total area of habitat than 
GARP or the expert-based model, with the most obvious 
differences along the western edge, where ENFA models 

predicted large areas in the lowest of our 5 frequency-of-use 
categories (Fig. 3). This western extension supports popu 
lations of mule deer (Odocoileus hemionus) and mountain 
lions {Puma concolor), and pr?dation risk may limit this 

western distribution of bighorn sheep. These areas may 
currently also represent marginal habitat for bighorn sheep 
because of increased vegetation 

cover due to lack of recent 

fires, in areas where habitat conditions dynamically change 
in response to wildfires. Although bighorn sheep in our 

study area have infrequently been found at elevations 
> 1,800 m or in forested areas, use of these habitat types 
has been documented in the Peninsular Ranges south of the 
United States-Mexico border, where vegetation 

cover at 

higher elevations may differ due to different fire patterns 
(Minnich et al. 2000). The ENFA model may, therefore, 
indicate potential for expanded habitat use along the 

western 
edge of our 

study 
area under different environmen 

tal conditions or predator densities. 
Habitat delineations predicted by GARP and by the 

expert-based model were similar in overall size and 

configuration, with some differences (Fig. 4). The GARP 
model did not predict habitat at the extreme southeastern 
corner of the expert-based habitat delineation, where 

bighorn sheep were historically observed, because our study 
area delineation did not include that area (because we had 
excluded historic sightings that had only general locational 
attributes from our non-GPS data set, which we used to 

delineate the study area). Likewise, GARP models did not 

predict some areas 
along the eastern edge of the expert 
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Figure 4. Habitat predicted by Genetic Algorithm for Rule-set Produc 
tion (GARP) for male and female bighorn sheep (sexes combined) in the 
Peninsular Ranges, California, USA, based on data collected during 2001 
2003. Five likelihood-of-presence categories are shown. The study area is 

indicated with a thick grey line and the expert-based model boundary is 

shown as a red dashed line. 

based model boundaries where bighorn sheep have been 

observed, possibly because our 2-year GPS data set did not 

capture the range of use necessary to predict habitat 

suitability. These differences, like those described above 
for the ENFA models and the western boundary, emphasize 
that model predictions should be interpreted with caution. 

Models are tools that must be placed in context with an 

understanding of the species' ecology, behavior, and history. 
An advantage of quantitative predictive models is that they 
can help identify potential habitat that is not recognized by 
expert opinion, and they can identify potential habitat not 

represented by current distribution. Both ENFA and GARP 
have been used to identify a species' fundamental niche, 

indicating 
areas where species may be reintroduced, where 

biological invasions may occur, or where factors other than 

habitat (e.g., pr?dation) may preclude presence of the species 
(Hirzel et al. 2004, Chen et al. 2007). 

MANAGEMENT IMPLICATIONS 
Our evaluation indicated that the expert-based model, 
referred to as essential habitat in the Recovery Plan for 

bighorn sheep in the Peninsular Ranges (USFWS 2000), 

provides an objective, defensible, and valuable habitat 
delineation for guiding continued recovery efforts. A key 

Figure 5. Locations of bighorn sheep as represented by 30% Global 

Positioning System (GPS) test locations (blue x-marks, 2001-2003) and 

non-GPS locations (red dots, 1940-2000 with most data collected post 
1990) in the Peninsular Ranges, California, USA. 

commonality among the GARP, ENFA, and expert models 
is the continuity of habitat throughout the United States 
Peninsular Ranges. All 3 models predicted a narrow north 
south band of habitat with habitat connectivity from the 
northern extent in the San Jacinto Mountains south to the 
international border. The Recovery Plan for this population 
identified the maintenance and restoration of habitat 

connectivity throughout the United States Peninsular 

Ranges as a high-priority recovery action, and our habitat 
models and assessment indicate that the potential to 

maintain connectivity still exists, thereby suggesting that 
this is an appropriate recovery goal. All 3 models reveal 
several constrictions where this band of habitat is narrow 

(<10 km in some cases), emphasizing the vulnerability of 
habitat connection in this mountain range. Encroachment 

by urban development, primarily along the eastern edges, 
global climate change, and habitat modifications could have 

significant implications by threatening habitat connectivity 
for bighorn sheep in these mountains. Habitat protection 
will, therefore, be key to maintaining this tenuous 
connection. 
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