FIRST RECORD OF A CYMOTHOID ISOPOD FROM A TIDEWATER GOBY AND THREE NEW TIDEWATER GOBY LOCALITIES IN HUMBOLDT COUNTY, CALIFORNIA

ADAM J. FRIMODIG1 AND GREG H. GOLDSMITH
U.S. Fish and Wildlife Service
Arcata Fish and Wildlife Office
1655 Heindon Road
Arcata, California 95521

The tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), is a small fish species restricted to brackish estuaries and lagoons along the California coastline from Tillas Slough, Del Norte County, to Agua Hedionda, San Diego County (Swift et al. 1989). In 1994, the tidewater goby was listed as federally endangered under the Endangered Species Act, due primarily to its disappearance from nearly 50% of its historic locations and the unstable status of remaining populations (USFWS 1994, 2005). Tidewater goby populations are negatively influenced by competition from non-native fish species, such as mosquitofish, centrarchids, striped bass, as well as both the yellowfin and chameleon goby (Swift et al. 1989, USFWS 2005); predation by the introduced African clawed frog, Xenopus laevis (Lafferty and Page 1997), and parasitism by both the trematode, Cryptocotyle lingua (Swift et al. 1989, Swenson 1999), and microsporidian, Kabatana newberryi (McGourty et al. 2007). To date, no reports exist of a cymothoid isopod and tidewater goby association.

The family Cymothoidae (Crustacea, Isopoda, Cymothoidae) consists of 380 spp. in 42 genera worldwide (Trilles 1991; N. Bruce, New Zealand’s National Institute of Water and Atmospheric Research, personal communication). Most cymothoids occur in coastal, shallow-water environments (Bunkley-Williams and Williams 1998). Cymothoids are ectoparasitic, protandrous hermaphrodites considered to be permanent symbionts (Brusca 1981, Bunkley-Williams and Williams 1998). Many cymothoids are capable of causing deleterious effects to their host by inflicting large wounds, impairing growth rates, and occasionally killing the fish (Brusca 1981, Bunkley-Williams and Williams 1998, Bakenhaster et al. 2006). Cymothoids have been reported as ectsosymbionts on a wide variety of host spp., mostly fishes (as summarized by Bunkley-Williams 1984). However, relatively few records exist that document cymothoid isopods infecting gobiid spp. (Popov 1933, Hatch 1947, Legrand 1952, Brusca 1981, Nieto and Alberto 1994, Charfi-Cheikhrouha et al. 2000, Ravi and Rajkumar 2007). Hatch (1947) and Brusca (1981) both reported cymothoids infecting the arrow goby, Clevelandia ios, in the eastern Pacific Ocean, but no records have documented an association between cymothoids and the tidewater goby.

One tidewater goby, 26 mm Total Length (TL), and associated cymothoid, 4 mm TL, were collected on 28 August 2006 in an unnamed slough tributary to the mainstem

1AJF current address: California Department of Fish and Game, Marine Region, 619 Second Street, Eureka, CA 95501. E-mail: AFRimodig@dfg.ca.gov.
Figure 1. Known tidewater goby population sites in the Humboldt Bay area, including three new localities (shown in circles) discovered in 2006: (1) an unnamed slough tributary to the mainstem Elk River; (2) Wood Creek; and (3) McDaniel Slough.
Elk River in Humboldt County, California (40°45'3"N, 124°11'16"W) (Fig. 1). Elk River is the largest freshwater tributary to Humboldt Bay draining a watershed of 137 km² in area (Manka2 2005). An extensive northern range-wide study for tidewater gobies during the summers of 2003 - 2006 in northern California did not reveal an associated cymothoid at any other site. A total of 1,818 tidewater gobies were collected from 19 of the 76 total sites sampled from Tillas Slough, Del Norte County to Garcia River, Mendocino County during the four year study. The tidewater goby and associated cymothoid were placed in a holding container in order to observe swimming behavior of the goby, subsequently anesthetized in tricaine methanesulfonate (MS-222), transferred to 95% EtOH, and placed in the Humboldt State University Fish Collection (catalog number HSU 4275). The isopod was identified to the Family Cymothoidae using a dissecting microscope. The isopod was a male and/or juvenile, which are often impossible to identify to genus or species level. The cymothoid is reported as branchial parasite based on its position covering the gills, which leads us to believe this specimen may belong to the genus Elthusa (N. Bruce; J-P. Trilles, University of Montpellier, personal communication). Hatch (1947) and Brusca (1981) reported, mainly in California waters, Elthusa californica as a parasite to the arrow goby, which is a close relative of the tidewater goby. A total of 66 arrow gobies were collected during the four year study from nine different sites, but none were associated with a cymothoid.

Cymothoids have piercing-sucking mouthparts that are used for parasitic feeding and are capable of causing detrimental effects to their host (Stoskopf 1992, Bunkley-Williams and Williams 1998, Bakenhaster et al. 2006). Both the tidewater goby and cymothoid were living at the time of collection, and the goby did not display any clear visible signs of deterioration such as lesions, fin rot, or lethargic swimming behavior. The cymothoid was lodged underneath the goby’s operculum and its length (over 15% of the goby’s length) caused the operculum to be considerably stretched (Fig. 2). The cymothoid, nearly encased by the stretched operculum, was situated directly above the goby’s gill arches. We believe its presence may harm the goby via three possible mechanisms: (1) the isopod may deform or erode the gill filaments based on its position (Sadzikowski and Wallace 1974, Brusca 1981, Williams and Bunkley-Williams 1985, Sievers et al. 1996, Thatcher et al. 2003); (2) the isopod may restrict respiration from the physical blockage of the gill opening (Segal 1987, Adlard and Lester 1995); and (3) the presence of the cymothoid may hinder the goby’s weight balance and/or swimming endurance (Sievers et al. 1996, Östlund-Nilsson et al. 2005).

This is the first reported association of a cymothoid with a tidewater goby. Other authors suggest that cymothoids often have high host and site specificity (Brusca 1981, Bunkley-Williams and Williams 1998); and small fish may be more vulnerable to cymothoid infestation (Adlard and Lester 1995). At least five cymothoid spp. have been reported from gobids: E. californica from the arrow goby mainly in California waters (Hatch 1947, Brusca 1981), Anilocra frontalis from the two-spotted goby, Anilocra erinacea from the tidewater goby, Anilocra alta from the whitebelly goby, and Anilocra californica from the two-spotted goby.

Gobius flavescens, the rock goby, *Gobius paganellus*, and the sand goby, *Gobius minutus*, in the Atlantic Ocean (Legrand 1952, Nieto and Alberto 1994), *Cymothoa indica* from the maned goby, *Oxyurichthys microlepis*, in the Indian Ocean (Ravi and Rajkumar 2007), *Nerocila bivittata* from the slender goby, *Gobius geniporus*, in the Mediterranean Sea (Charfi-Cheikhrouha et al. 2000), and *Nerocila tartakowski* from the knout goby, *Mesogobius batrachocephalus*, in the Black Sea (Popov 1933) (J-P. Trilles, personal communication). Presently, there is a lack of sufficient range-wide tidewater goby studies to assess whether or not the cymothoid found in this study is accidental or actually targets this endangered fish species. Most isopod gill parasites do not greatly distort the operculum and this male cymothoid was disproportionately large for the size of the tidewater goby host, suggesting that the isopod infestation may be accidental (N. Bruce, personal communication). Additionally, this is the first record of tidewater gobies inhabiting Elk River. Two other new locations, Wood Creek (40º47'1"N, 124º5'57"W) and McDaniel Slough (40º51'27"N, 124º6'20"W), were also discovered during the summer of 2006. Therefore, increased sampling and research clearly needs to be conducted on the tidewater goby, as well as careful inspection of individuals to determine if cymothoids are associated, in order to better understand and manage the population.

ACKNOWLEDGMENTS

The authors thank A. Scheiff for his assistance in conducting the field work. We are also greatly appreciative for the helpful comments provided by N. Bruce, J-P. Trilles, C. Chamberlain, R. Wetzer, A. Kinziger, C. Swift, and two anonymous reviewers. This work was conducted under a California Department of Fish and Game permit (# 000998) and a federal subpermit (FWSAFWO-7).
LITERATURE CITED

Received: 3 July 2007
Accepted: 17 September 2007
REFEREE ACKNOWLEDGMENTS

The following individuals have reviewed manuscripts for *California Fish and Game* during 2008. The list is as complete as possible. The editors apologize for any omission and sincerely thank all those who have contributed to the quality of the journal by providing competent and timely reviews.

Averill-Murray, R.
Barnes, T.
Barry, S.
Bolster, B.
Cain, J.
Coulston, P.
Feeney, R.
Hanan, D.
Hen, B.
Henry, F.
Israel, J.
Jennings, M.
Lea, R.N.
Locke, J.
Moreno, S.
Muth, A.
Pearson, D.
Richter, D.
Single, J.
Stephenson, T.
Sullivan, R.
Swift, C.
Thompson, J.
We explored metrics to identify suspect out-and-back movements among GPS collar data from desert tortoises in the Inyo County, California, 194 - 199

Additionally, we employed Garmin III Plus handheld GPS receivers to collect fixes over a 24-day period (median frequency of fixes=48.5 min) to explore the possibility that this indoor location could cause a marked increase in GPS location error.

Further, we activated four ATS model GPS2000 GPS collars at the same interior location for 16 days. We also used a 24-day period (median frequency of fixes=48.5 min) to explore the possibility that this indoor location could cause a marked increase in GPS location error.

In an effort to replicate conditions at the indoor location, we activated similar conditions (Table 1). In an effort to replicate conditions at the indoor location, we activated similar conditions (Table 1). In an effort to replicate conditions at the indoor location, we activated similar conditions (Table 1). In an effort to replicate conditions at the indoor location, we activated similar conditions (Table 1).
shastae, in Northern California, 119 - 121
Mammals in Nearshore Waters of Monterey Bay, California, 1 – 17
Martinez, Juana Lopez: see Rodriguez-Romero, Palacios-Salgado, and Martinez
Matchett, Elliott L. and James S Sedinger: A Change in Waterfowl Species in the Honey Lake Valley, California, 44 – 52
McCullough, Dale R.: see Jones, Weckerly, and McCullough
McGourty, Katie, Andrew Kinziger, and Greg Goldsmith: Spawning Time, Fecundity, Habitat Utilization, and Parasites of a Northern California Population of Tidewater Goby, Encyclogobius newberryi, 18 – 32
Orland, Mary C.: see Clark and Orland
Palacios-Salgado, Deivis S.: see Rodriguez-Romero, Palacios-Salgado, and Martinez
Pierce, Becky M.: see Villepique, Bleich, Pierce, Stephenson, Botta, and Bowyer
Rodriguez-Romero, Jesus, Deivis S. Palacios-Salgado, and Juana Lopez Martinez: First Records of the Firnged Sculpin, Icelinus fimbriatus,(Scorpaeniformes: Cottidae), Off the West Coast of Baja California, Mexico, 150 - 153
Sedinger, James S.: see Matchett and Sedinger
Shaw, Franklin R. and Donald R. Gunderson: Notes on the Life History traits of the Rosethorn Rockfish, Sebastes helvomaculatus, 123 - 136
Stephenson, Thomas R.: see Villepique, Bleich, Pierce, Stephenson, Botta, and Bowyer
Weckerly, Floyd W.: see Jones, Weckerly, and McCullough
Weigand, James F.: see Keith, Berry, and Weigand

Abundance: and Distribution of Marine Mammals in Nearshore Waters of Monterey Bay, California, 1 – 17
Age: Influence of, and Sex on Dressed-Whole Body Weight Relationships in Black-Tailed Deer, 137 – 142
Camera Trap Systems: Comparison of Two, for Detection of American Marten on a Winter Landscape, 53 – 59
Deer, Black-Tailed: Influence of Age and Sex on Dressed-Whole Body Weight Relationships in, 137 – 142
Desert Tortoise: New Protocol: When Rare, for Assessing Status, 75 – 97
Desert Tortoise: Status of, in Red Rock Canyon State Park, 98 – 118
Distribution: Abundance and, of Marine Mammals in the Nearshore Waters of Monterey Bay, California 1 – 17
Fecundity: Spawning Time, Habitat Utilization, and Parasites of a Northern California Population of Tidewater Goby, Encyclogobius newberryi, 18 – 32
Goby, Tidewater: First Record of a Cymothoid Isopod from a, and Three New Localities for in Humboldt County, California, 194 – 199
Green Tree Retention: Aerial Implementation Monitoring of, in Clearcuts on Northern California Private Timberlands, 169 – 179
Habitat Utilization: Spawning Time, Fecundity, and Parasites of a Northern California Population of Tidewater Goby, Encyclogobius newberryi, 18 – 32
Isopod, Cymothoid: First Record of a, From a Tidewater Goby and Three New Tidewater Goby Localities in Humboldt County, California, 194 – 199
Life History Traits: of the Rosethorn Rockfish, Sebastes helvomaculatus, 123 – 136
Marten, American: Comparison of Two Camera Trap Systems for Detection of, on a Winter Landscape, 53 – 59
Mexico, Baja California: First Records or the Fringed Sculpin, Icelinus fimbriatus, (Scorpaeniformes:Cottidae) Off the West Coast of, 150 – 153
Monterey Bay, California: Abundance and Distribution of Marine Mammals in Nearshore Waters of, 1 – 17
Orchard, Avocado: Carnivore Use of, in Southern California, 61 – 74
Parasites: Spawning Time, Fecundity, Habitat Utilization and, of a Northern California Population of Tidewater Goby, Encyclogobius newberryi, 18 – 32
Private timberlands: Aerial Implementation Monitoring of Gree Tree Retention in Clearcuts on Northern California, 169 – 179
Rockfish, Rosethorn: Notes of the Life History Traits of, 123 – 136
Salamander, Shasta: A New Elevation Record for, 119 – 121
Sculpin, Fringed: First Records of the, Off the West Coast of Baja California, Mexico, 150 – 153
Sex: Influence of Age and, on Dressed-Whole Body Weight Relationships in Black-Tailed Deer, 137 – 142
Sturgeon, White: Overbite Clamm, Corbula amurensis, Defecated Alive by, 143 – 149
Tidewater Goby: Spawning Time, Fecundity, Habitat Utilization, and Parasites of a Northern California Population of, 18 – 32
Waterfowl Species Composition: A Change in, in the Honey Lake Valley, California, 44 – 52
CALIFORNIA FISH AND GAME

SCIENTIFIC NAMES

Anas platyrhynchos, 44
Artemisia tridentata, 45
Martes pennanti, 53
Merluccius productus, 152
Abies magnifica, 170
Acamptopappus sphaerocephalus, 101
Acer macrophyllum, 119
Acipenser transmontanus, 143
Alnus crispa, 158
Alnus tenuifolia, 170
Ambrosia dumosa, 78, 101
Anas acuta, 44
Anas clypeata, 44
Anas strepera, 44
Anilocra frontalis, 196
Arctostaphylos viscida, 120
Argentian aialis, 152
Artemesia tridentata, 158
Aythya affinis, 44
Balaenoptera musculus, 37
Bassia hypsopifolia, 45
Blephariopoda occidentalis, 11
Bromus sp., 113
Bromus tectorum, 45
Callorhinus ursinus, 33
Calocedrus decurrens, 119, 170
Canis latrans, 61, 80
Carcharodont carcharias, 33
Carex spp., 19
Ceanothus integrerrimus, 120
Cephalorchynex hectori, 14
Cetorhinus maximus, 34
Chrysothamnus spp., 45
Clevlandia ios, 169
Clupea pallasi, 39
Coleogyne ramosissima, 78
Corbula amurenisi, 143
Corbula fluminea, 144
Corvus corax, 113
Cryptocotyle lingua, 169
Cyanocitta stelleri, 56
Cymothoa indica, 197
INDEX TO VOLUME 94

Dedelphia virginiana, 61
Dendroica coronata, 176
Dryocopus pileatus, 176
Elthusa californica, 196
Elthusa, 196
Elytrigia elongate, 45
Emerita analoga, 11
Empidonax oberholseri, 176
Encyclogobius newberryi, 18, 169
Engraulis mordax, 11, 40
Enhydra lutris, 1
Eriogonum fasciculatum, 78
Erodium cicutarium, 113
Eschrichtus robustus 2, 37
Eumetopias jubatus, 181
Felis concolor, 69, 166
Glaucosmy sabrinus, 56
Gobius flavescens, 197
Gobius geniporus, 197
Gobous pagwnellus, 197
Gopherus agassizii, 75, 98
Grayia spinosa, 78
Gulo gulo, 53
Hippoglossina stomata, 152
Hydromantes shastae, 119
Hymenoclea, salsola, 101
Icelinus cavifrons, 150
Icelinus fimbriatus, 150
Icelinus quadrifasciatus, 150
Icelinus tenius, 150
Juglans californica, 63
Juncus balticus, 45
Juniperus occidentalis, 78
Kabatana newberryi, 169
Kabatana newberryi, 30
Kathetostoma averruncus, 152
Lamna ditropis, 34
Larrea tridentata, 78, 101
Lepidopus fitchi, 152
Lithocarpus densiflorus echinoides, 120
Loligo opalescens, 11
Lycium andersonii, 78
Lynx rufus, 57, 61
Lyopsetta exilis, 152

CALIFORNIA FISH AND GAME

mountain ranges from 2002 to 2005. Evaluation of data from those deployments showed numerous implausible movements, which lead us to question the accuracy of POSREC GPS collars. Because of the questionable data encountered, we tested the precision of Televilt POSREC-Science™ 600 collars under several conditions: 1) an area of optimal sky visibility; 2) ad hoc test locations where collars remained attached to deceased mule deer prior to recovery of the collar; and 3) ad hoc test locations inside a 1-floor, wood-framed building, or outside the homes of two biologists, for a total of 663 GPS positions. Unprecedented errors in excess of 2 km occurred in 2% of fixes, whereas 12% of fixes were >1 km and 53% > 100 m from the true location. Comparisons among six additional GPS collar models from three manufacturers showed POSREC collars to be unique in their lack of precision. Because viewing point data alone may belie the presence of flawed GPS fixes, we urge researchers using GPS collars, particularly Televilt POSREC collars, to evaluate patterns of movement to ensure that data are not affected by sampling artifacts. We developed a method for screening GPS collar data and provide an ArcView extension useful for removing erroneous fixes. We suggest researchers contemplating purchases of GPS collars obtain test data from the individual collars they will deploy, to ensure that real-world precision meets study objectives.

INTRODUCTION

Studies of GPS accuracy have evaluated effects of canopy and terrain (Rempel et al. 1995, Dussault et al. 1999, D’Eon et al. 2002, Di Orio et al. 2003, Cain et al. 2005, DeCesare et al. 2005) as well as collar orientation (Moen et al. 1996, D’Eon and Delparte 2005). These studies elucidated external influences on location accuracy, and have important implications for the interpretation of data from GPS collars (D’Eon 2003, Frair et al. 2004). These comparisons of accuracy in commercially available GPS collars, however, have been limited to collars made by Advanced Telemetry Systems (ATS; Isanti, Minnesota), Lotek Wireless (Newmarket, Ontario), and Telonics, Inc. (Mesa, Arizona). Frair et al. (2004) and Gau et al. (2004) provided data on respective fix rates and reliability of Televilt GPS-Simplex™ collars, but did not assess accuracy or precision. This work documents the unprecedented magnitude of location errors inherent in widely deployed Televilt POSREC-Science™ GPS collars.

Evaluation of GPS collar error was not a planned objective of our studies, but when extraordinarily improbable position data were detected after deploying collars on study animals, we sought data from collars at fixed locations to verify the presence of errors. To this end, we combined controlled testing with opportunistic data from fixed locations identified retrospectively from a database of GPS collar fixes, yielding data from several GPS collar models under a range of satellite visibility conditions and illuminating the prevalence of heretofore unprecedented errors. We also provide a method that is broadly applicable to screening GPS collar data for patterns characteristic of flawed locations.
Macoma balthica, 145
Martes americana, 53
Martes pennanti, 176
Megaptera novaeangliae, 37
Mephitis m. macoura, 62
Mephitis mephitis, 61
Mesogobius batrachocephalus, 197
Mirounga angustirostris, 33, 181
Monolene asaedai, 152
Mycoplasma agassizii, 80, 101
Mycoplasum testudineum, 101
Nerocila bivittata, 197
Nerocila tartakowskii, 197
Octopus rubescens, 11
Odocoileus hemionus, 155
Odocoileus virginianus, 137
Ophiodon galeoides, 152
Ovis canadensis, 155
Oxyurichthys microlepis, 197
Panthera onca, 62
Parus gambeli, 176
Persea americana, 62
Phoca vitulina, 1, 33
Phoco vitulina richardi, 180
Phocoena phocoena, 1
Physeter macrocephalus, 37
Picea sitchensis, 158
Pinus contorta, 54
Pinus jeffreyi, 54, 170
Pinus lambertiana, 119, 170
Pinus monophylla, 78
Pinus ponderosa, 119, 170
Piranga ludoviciana, 176
Pleuronichthys guttulatus, 152
Pleuronichthys verticalis, 152
Poecile gambeli, 57
Populus balsamifera, 170
Populus tremuloides, 170
Procyon lotor, 61
Pseudotsuga menziesii, 54, 119, 170
Quercus agrifolia, 63
Quercus chrysolepis, 119
Quercus kelloggi, 119
Quercus vacciniifolia, 120
Raja inorata, 152
Ribes roezlii, 120
Ruppia maritima, 19
Sarcobatus vermiculatus, 45
Sardinops sagax, 40
Schismus sp., 113
Scirpus acutus, 45
Scirpus maritimus, 45
Scirpus spp., 19
Sciurus, griseus, 61
Scorpaena guttata, 152
Sebastes elongatus, 126
Sebastes exsul, 152
Sebastes helvomaculatus, 123
Sebastes semicinctus, 152
Senna armata, 101
Sialia mexicana, 176
Sistichlis elongate, 45
Sousa chinensis, 14
Strix occidentalis caurina, 171
Susicyon thous, 62
Synodus lucioceps, 152
Taxidea taxus, 69
Toxicodendron diversilobum, 120
Turdus migratorius, 176
Tursiops truncates, 5
Typha latifolia, 45
Umbellularia californica, 119
Urocyon cinereoargenteus, 61
Ursus americanus, 61, 158
Vulpes macrotis, 80, 102
Vulpes necator, 176
Xenopus laevis, 169
Xylorhiza tortifolia, 78
Yucca brevifolia, 78, 103
Zalophus californianus, 1, 33, 181
Zaniolepis frenata, 152