
ABSTRACT 
Variability in larval supply introduces uncertainty 

into the management of marine fisheries. This variabil-
ity can confound short-term population projections of 
both traditional and spatially explicit models of fishery 
productivity. A potential remedy is the use of physical 
oceanographic variables, such as an upwelling index or 
the Pacific Decadal Oscillation, as proxies for recruitment 
year class strength. We describe a method for incorporat-
ing proxy information into population models for fish-
ery management. Our model of a conventional fishery 
(using kelp rockfish as an example) suggested that prox-
ies were effective in predicting actual larval survival if 
there was a strong correlation between the proxy and 
larval survival (r > 0.8), when recruitment was highly 
variable. Model outputs were most useful when used 
to hindcast rather than forecast the population trajec-
tory. A spatial extension of the model for marine pro-
tected areas (MPAs) confirmed those results and revealed 
that 1) larval dispersal distances did not affect the util-
ity of the proxy, and 2) adult home range size influ-
enced whether before:after or inside:outside biomass 
ratios provided a more effective metric of MPA success. 
We found that proxies greatly improved model projec-
tions over short time scales, but that projections beyond 
the time needed for recruits to enter the fishery were 
less effective. This work provides an example of how 
information about environmental variability affecting 
recruitment can be incorporated into fishery models to 
improve management. 

INTRODUCTION
A major difficulty encountered in the management of 

marine fisheries is the uncertainty introduced by vari-
ability in recruitment. It has been suspected for more 
than 100 years that physical factors affecting larval sur-
vival and transport drive much of this variability (Cush-
ing 1982; Mullin 1994; Fogarty et al. 1991) and there 
have been attempts to find environmental variables 
which can predict recruitment success (Cushing 1982). 

Strong year classes (recruitment pulses or booms) can 
propagate through a fishery for multiple years and may 
sustain the fishery (Hjort 1914; Shepherd and Cushing 
1990). The precise mechanism by which physical fac-
tors affect recruitment success is not always known and 
tends to be species-specific, but investigators have deter-
mined the nature of the link in a few cases (e.g., Gaines 
and Bertness 1993; Botsford et al. 1994; Peterson and 
Schwing 2003). More often, investigators report a rela-
tionship between recruit year-class strength and a physical 
proxy variable. Examples of such relationships have been 
reported for several fished species on the Pacific coast 
of North America. These include a correlation between 
recruitment of Dungeness crab (Cancer magister) and the 
Bakun upwelling index (Botsford and Wickham 1974), 
the timing of the spring transition (Shanks and Roegner 
2007), and the Pacific Decadal Oscillation (Shanks et al. 
2010). Likewise, settlement of kelp bass (Paralabrax clath-
ratus) and nearshore rockfishes (Sebastes spp.) in southern 
California is related to a suite of oceanographic predic-
tors over a range of spatial and temporal scales, including 
sea surface temperature, Ekman transport, and offshore 
wind stress (Caselle et al. 2010a). Total annual settlement 
of those nearshore rockfish species is strongly corre-
lated with both the offshore and alongshore components 
of upwelling-associated transport (Caselle et al. 2010b). 
The information contained in these physical proxies may 
be useful in understanding recruitment variability and 
improving fisheries management.

Conceptually, a close relationship between a physi-
cal proxy and recruitment could be used to predict the 
short-term trajectory of recruitment, biomass, and yield 
when forecasting the possible consequences of differ-
ent management options in a decision analysis context 
(Peterman and Anderson 1999; Harwood and Stokes 
2003; Drechsler and Burgman 2004). Furthermore, a past 
record of year-class size could be used to distinguish 
signal (due to management) from noise (due to recruit-
ment variability) in hindcasting models used to evaluate 
management actions in an adaptive management (sensu 
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ment of adults and larvae between fished and unfished 
regions, 2) the intensity of fishing outside MPA bound-
aries, 3) the lag time between MPA implementation and 
recruitment, and 4) the strength of the signal:noise ratio 
introduced by recruitment variability. The first two fac-
tors make it difficult to measure the effects of MPAs over 
both long and short time scales (Botsford et al. 2001; 
Moffitt et al. 2009; White et al. 2010b); while factors 3 
and 4 hold for both nonspatial and spatial management 
over the short term only. Here we focus primarily on the 
problems introduced by lag times and signal:noise ratios 
related to recruitment variability as the first two topics 
have been considered in detail elsewhere (Moffitt 2009; 
Moffitt et al. 2009; White et al. 2010b).

Here we develop a method for incorporating physi-
cal proxies of larval production into population models 
used for fishery management and assessment. We first 
develop a model of a conventionally managed fishery, 
then extend the model to include spatial management. 
In both cases we first illustrate the use of prospective 
modeling (forecasting), for decision analysis at the time 
of an initial management action. We then consider the 
use of retrospective modeling (hindcasting), in which 
we simulate the trajectory between an initial decision 
and a later observation. In this modeling work we use 
kelp rockfish, Sebastes atrovirens, as an example of a typ-
ical nearshore fished species for which physical prox-
ies for recruit year-class strength exist (Caselle et al. 
2010b). The goal of this modeling work is to deter-
mine if the addition of the physical proxy aids in dis-
tinguishing deterministic changes in recruitment from 
stochastic variability in order to evaluate its potential 
for guiding management decisions and implementing 
adaptive management. 

meThODS
We implemented a discrete time, spatially explicit, 

age-structured, single-species model of a typical rocky 
reef species. We incorporated von Bertalanffy growth, a 
nonlinear length-weight relationship, and fecundity pro-
portional to biomass. Adults spawn pelagic larvae during 
an annual reproductive period, larvae disperse accord-
ing to a dispersal matrix, and settling larvae experience 
density-dependent survival following a Beverton-Holt 
survivorship function. The model follows the basic struc-
ture used by White et al. 2010b and can be summarized 
by the following equations, taking Nj(t) to be the vec-
tor of abundances of each of A age classes in spatial cell 
j (out of n total cells) at time t (Table 1 summarizes sym-
bols used in this paper; boldface symbols indicate vec-
tors and matrices). The number of larval settlers arriving 
at cell i, Si, is

  
n
  1 Si(t) = ∑ 

i = 1
 Dij f (Nj(t)) 1+e – θ(t) (1)

Walters 1997) context. To our knowledge, no physical 
proxy has yet been incorporated into a population model 
used for adaptive management. Physical proxies however, 
are starting to be used as indicators of overall fisheries 
productivity. For example, an environmental parameter 
based on sea surface temperature is used to determine 
the harvest guideline for Pacific sardine, Sardinops sagax 
(Hill et al. 2007; but see McClatchie et al. 2010). 

Management strategy evaluations, which simulate 
both population dynamics and management responses 
(Sainsbury et al. 2000), reveal the consequences of vari-
able recruitment for stock assessment and the adaptive 
management of fishery stocks. The management prob-
lem is that realistic levels of process error (sensu Hilborn 
and Mangel 1997) in annual recruitment can cause pro-
jected biomass to vary over several orders of magnitude 
among simulations with the same deterministic dynam-
ics. Examples of this problem have been shown for the 
adaptive management of many species, including rock-
fishes (Sebastes spp.) from the U.S. Pacific coast (Punt and 
Ralston 2007), Gulf of Alaska walleye pollock (Theragra 
chalcogramma; A’mar et al. 2008) and several key fishery 
species in southeast Australia (Punt et al. 2000). Although 
the minimum value of spawning potential ratio (SPR) 
(expected lifetime egg production) needed for popu-
lation persistence is uncertain and depends on larval 
processes, the SPR itself is not sensitive to interannual 
variations in recruitment (Hilborn et al. 2002). How-
ever, the management status of a stock is typically esti-
mated in terms of biomass or catch (e.g., Ralston 2002; 
Rose and Cowan 2003; Punt and Ralston 2007), which 
are highly sensitive to physically-forced variability. Addi-
tional uncertainty is introduced when there is a time lag 
between spawning and recruitment. This introduces a 
lag between the implementation of a new management 
action and its effects on the fishery, and can lead to man-
agement that tracks noise rather than the deterministic 
signal (Punt and Ralston 2007).

The problems of recruitment variability are com-
pounded in the management of marine protected areas 
(MPAs), which adds the spatial dimension. Manage-
ment of MPAs ideally involves monitoring popula-
tions inside MPAs using a Before-After Control-Impact 
(BACI) design so that the deterministic effects of MPAs 
on fished populations can be distinguished from large-
scale, environmental forcing across areas (Underwood 
1994; Fraschetti et al. 2002; Grafton and Kompas 2005; 
Russ et al. 2008). However, monitoring may not start at 
the time of implementation (Fraschetti et al. 2002) and as 
a consequence it is common to measure trajectories of a 
response variable (e.g., biomass) inside and outside MPAs 
to quantify differences between fished regions and MPAs 
(e.g., Hamilton et al. 2010). However, the effectiveness 
of this approach is likely to be sensitive to 1) move-
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where Dij is the i,jth element of the dispersal matrix D 
and gives the probability of larvae dispersing from j to i. 
The term including e –θ(t) represents larval survival and 
is explained below. The scalar f (Nj) is the total fecundity 
of the population at j:

 f (Nj(t)) = SSBj(t)b (2a)

SSBj(t) = [p(1)B(1), p(2)B(2), . . . p(3)B(A)] × Nj(t) (2b)

where × represents vector multiplication, SSBj(t) is 
spawning stock biomass, b is fecundity per unit biomass, 
p(a) is the probability of being reproductively mature at 
age a (assumed to be 0 for a < am and 1 for a ≥ am), and 
B(a) is mean biomass at age a. Biomass is a function of 
length, B(a) = qL(a)r, where q and r are constants. Length 
at age is given by a von Bertalanffy function with growth 
rate k, age at length zero a0, and asymptotic maximum 
length L∞:

 L(a) = L∞ [1– e –k (a – a0)] (3)

Note that for simplicity we assume there is no variabil-
ity in length or biomass at age. 

The updating step for the population is given by 
Equation 4 (see Equation 4, next page).

Note that the initial age class in Nj(t+1) is comprised 
of settlers Sj(t) that survive Beverton-Holt density-
 dependent mortality (with density-independent survi-
vorship α and asymptotic maximum settler density β). 
Post-settlement individuals have density-independent 
mortality rate M and experience fishing rate F(a), which 
is a function of age such that F(a) = 0 for all a < ac , the 
age at which individuals recruit to the fishery; F(a) is 
constant for all a ≥ ac and was varied to create differ-
ent fishing scenarios (fishery mortality typically depends 
on length not age; because our model has deterministic 
growth, length and age are directly related by Equation 
3, so age ac corresponds to a particular length). Demo-
graphic parameter values were taken from literature esti-
mates for kelp rockfish, Sebastes atrovirens (tab. 2). In all 
cases we assume data are fisheries-dependent, so direct 
observation of age classes younger than ac is impossible.

The major difference in model structure from typical 
models of this type (e.g, White et al. 2010b) is that we 
explicitly modeled larval survival. Following the con-
vention used in statistical survival analysis, we assumed 
that larval survival was a logit function of parameter 
θ(t), so that larval survivorship is equal to logit–1(θ(t)) 
= 1/(1+exp(–θ(t))). This relationship allows θ(t) to vary 
widely but constrains survival to fall between 0 and 
1; alternative functional forms could be substituted as 
appropriate for a specific study system. We assumed that 
θ(t) is a function of some physical oceanographic fac-
tor, and is correlated, with correlation coefficient ρ, to 

TABle 1
Symbols used in the paper

	 Sub-	
Symbol	 element	 Definition

State variables
N(t) Ni(t)  Abundance of each age classes in each cell at 

time t (A×n matrix)
Ni(t) Ni,a(t)  Abundance of each age class in cell i at time t 

(A×1 vector)
Si(t)  Number of settlers in cell i at time t

SSB(t) SSBi(t)   Spawning stock biomass in cell i at time t 
(n×1  vector)

Parameters
α   Density-independent Beverton-Holt 

settler survival
a0  Age at size 0
ac  Age at recruitment into fishery
am  Mean age at maturity
β   Asymptotic Beverton-Holt maximum 

recruit density
b  Fecundity per unit biomass
γ  Length-biomass exponent
D Dij Probability of larval disperal from cell j to cell i
Fi(a)   Fishing mortality rate for age a individuals in 

cell i 
∙Fi(a)   Effective fishing rate experienced due to home 

range movement
 FMSY   Value of F that produces maximum 

sustainable yield
h  Radius of adult homerange
k  von Bertalanffy growth rate
L∞  von Bertalanffy Asymptotic maximum length
M  Natural mortality rate
q  Length-biomass coefficient
ρ  Correlation between 𝛉 and 𝛟

Other
A  Number of age classes
B(a)  Biomass at age a
CRT  Critical replacement threshold
cvθ  Coefficient of variation of θ(t)
f (Ni(t))  Fecundity at cell
λD  Leading eigenvalue of D
L(a)  Length at age a
LEP  Lifetime egg production
LEPpre   Fraction of lifetime egg production (relative to 

unfished maximum) at t ≤ 0
LEPpost  Fraction of lifetime egg production at t > 0
n  Number of spatial cells
𝛟 ϕ(t) Physical factor affecting larval survival
p(a)  Probability of maturity at age a
sθ  standard deviation of θ(t)
sϕ  standard deviation of ϕ(t)
SPR  spawning potential ratio
𝛉 θ(t) Larval survival parameter
∙𝛉   Values of 𝛉 predicted from a particular 𝛟 

without accounting for ρ
X'   Simulated value of variable X, incorporating 

process variability
X*   Actual value of variable X corresponding to 

 simulated value X' 
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population densities, each individual produces on aver-
age at least one successful offspring within its lifetime 
(Hastings and Botsford 2006). Assuming that popula-
tion density is low enough to ignore density-dependent 
factors, White (2010) showed that this requirement can 
be expressed as

αλDlogit –1(θ)LEP ≥ 1 (5)

where λD is the leading eigenvalue of the dispersal matrix 
D and LEP is lifetime egg production, calculated as the 
sum of the product of survival to age a and fecundity at 
age a over all ages A. 

The basic effect of fishing is to reduce LEP. For con-
venience we express both LEP and SSB as values rela-
tive to the maximum unfished value. The units of all 
other variables, such as α, are also scaled accordingly. 
Therefore the persistence threshold in Equation 5 can 
be expressed as

LEP ≥ 1/αλDlogit –1(θ) (6)

The quantity 1/αλDlogit–1(θ) is referred to as the Criti-
cal Replacement Threshold (CRT). The CRT is mathe-
matically related to the Goodyear compensation ratio and 
the steepness parameter, both of which are often used in 
fisheries models (White 2010); the CRT is interpreted as 
the minimum LEP required for population persistence. 
In order to keep our analysis general—rather than spe-
cific to kelp rockfish—we express fishing effort in terms 
of the LEP it produces, and parameterize α so that CRT 
= 0.25 in all model runs (cf. White et al. 2010b; note that 
White et al. referred to the scaled value of LEP as FLEP, 
the fraction of unfished lifetime egg production). In this 
way, the level of fishing is expressed relative to the persis-
tence threshold, and results would be similar across spe-
cies for the same value of LEP relative to CRT. 

Simulated observations of stochastic  
larval survival

In all simulations described here, we assume that past 
observations of S(t) and ϕ(t) had been made over some 
period with relatively constant larval production, so that 
estimating θ(t) over that period was possible. Therefore 
we now possess an estimate of the means, ∙θ and ∙ϕ, and 
standard deviations, sθ and sϕ, of θ(t) and ϕ(t) as well as 

some observable quantity ϕ(t), e.g., sea surface temper-
ature, an upwelling index, the timing of a seasonal cur-
rent shift, Pacific Decadal Oscillation, etc. For example, 
in kelp rockfish, Caselle et al. (this issue) have docu-
mented correlations between larval settlement (a func-
tion of larval survival) and the strength of the offshore 
component of upwelling transport with values of r as 
high as 0.99. For the purposes of the model, we assume 
that ϕ(t) is some generic quantity that is recorded annu-
ally. Thus, given past observations of ϕ(t), it is possible to 
re-create the pattern of θ(t) (with precision determined 
by ρ) and thus approximate the pattern of larval survival, 
even when observations of the resulting age classes are 
not yet available.

The persistence of an age-structured population with 
density-dependent recruitment requires that at low 

TABle 2
Life history parameters for kelp rockfish,  

Sebastes  atrovirens, used in the model

Parameter	 Estimate	 Notes

Beverton-Holt settler survival  
R = αS/(1+(α/β)S)
α 4.86 a
β 1  b

Length-at-age (cm)
L(a) = L∞ (1 – exp(–k(a – a0)))
L∞  37.8 cm c
k  0.23 y–1

a0   –0.7 y

Weight-at-length (kg)
W = pLq  c
p 9.37 × 10–6 kg cm–q

q 3.172

A 25 y d
am 4 y d
M 0.2 y–1 e
ac 4 y (29 cm) f
∙θ    0.5  g
Notes:
a. Fitted to produce CRT = 0.25, given other demographic parameters
b.  Arbitrary; this parameter defines spatial scale at which density is calculated but does 

not affect model results
c. Source: Lea et al. (1999)
d. Source: Love et al. (2002)
e. Not well known; value based on lifespan given in Love et al. (2002)
f. Based on California Department of Fish and Game regulations
g.  Arbitrary; because a is scaled to produce a given CRT, model results are not sensitive 

to this value

 
 0     αSj(t)
 e – (M + F (1))     1 + α Sj(t)
Nj (t + 1) =  e – (M + F (2))     β
   . .    × Nj(t) + 0              

.          .    .
    

e – (M + F (A – 1))   0  .
      0 ∙	 ∙	 ∙	 ∙	 (4)
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In all cases where N'(t) is simulated, we also simulated 
an ‘actual’ value, which we denoted N*(t), so the accu-
racy and precision of the distribution of N'(t) could be 
estimated by comparison to N*(t). N*(t) was simulated 
by initializing the model in year t = –50 at the determin-
istic equilibrium (using θ(t) = ∙θ ), then running forward 
in time with a time series 𝛉 generated from random 
draws from a normal distribution with parameters ∙θ 
and sθ. In the simulations presented here, ∙θ was held at a 
constant value of 0.5. The correction applied in Equa-
tion 6 ensures that the results are insensitive to the level 
of larval survival, because collapse depends only the rela-
tive values of LEP and CRT. For the sake of generality 
we describe variation in θ using the coefficient of varia-
tion, cvθ, which is equal to sθ / ∙θ. We considered values of 
cvθ ranging from 0.1 (nearly deterministic) to 10, a range 
that brackets the observed level of interannual variability 
in recruitment reported by Caselle et al. (this issue) and 
Shanks et al. (this issue). Both studies reported levels of 
variability in recruitment with a coefficient of variabil-
ity greater than 1; this is not directly comparable to cvθ	
as we have defined it, but we know of no studies that 
have directly reported estimates of temporal variability 
in larval survival.

Nonspatial model
We first consider the case of a fished population man-

aged in a conventional manner, i.e., assuming that the 
entire population in a geographical region is a well-
mixed unit. As such, there is only a single subpopulation 
in the models in Equations 1–4 (n = 1), and the dispersal 
matrix D is a scalar with value 1.

The management scenario is thus: we presume that 
we are in year t = 0. The population has been fished for 
30 years at level LEPpre. In year t = 0, managers decide 
to adjust management in order to change LEP to one of 
several possible new values, LEPpost. We assume LEPpre 
can be calculated empirically (e.g., O’Farrell and Bots-
ford 2005), but it is difficult to manage fishing mortality, 
F, such that a precise value of LEPpost will be obtained 
(note that LEP as we have defined it here is equivalent 
to Spawning Potential Ratio, SPR, as used in the fish-
eries literature). 

In practice, groundfish fisheries on the Pacific coast 
typically utilize control rules based on spawning biomass 
rather than LEP (or SPR) directly. The overall manage-
ment target is a value of F that approximates maximum 
sustainable yield, FMSY. For a particular value of CRT, 
FMSY is obtained at a particular SPR; in turn, a target 
value of SSB (relative to unfished) is used as a proxy for 
SPRMSY. For many Pacific groundfish, the target is SPR 
= 50% of unfished, and the spawning biomass target is 
40% of unfished (Ralston 2002; Punt and Ralston 2007). 
Stocks which decline more than this spawning biomass 

an estimate of the linear relationship (including an esti-
mate of the correlation coefficient ρ) between θ(t) and 
ϕ(t). We further assume that interannual variation in 
ϕ(t) and θ(t) is such that autocorrelation in those time 
series is negligible. If larval production varied greatly 
in the past, estimates of the parameters of θ(t) and ϕ(t) 
would be biased because variation in S(t) due to pro-
duction will be incorporated into estimates of sθ, inflat-
ing it. As such, one should be cautious when estimating 
θ(t) and ϕ(t), and detrending or other processing of S(t) 
may be necessary.

For clarity it will become important to distinguish 
between observed values of θ(t), ϕ(t), and N(t), and val-
ues that are simulated from other sources, which we 
denote with the ‘prime’ symbol. For example, given an 
observed vector of physical proxy values 𝛟, we can sim-
ulate a corresponding time series 𝛉' such that 𝛟 and 𝛉' 
have correlation ρ. Predicted population densities simu-
lated using 𝛉' are denoted N' and predicted spawning 
stock biomass is SSB'.

A goal of this analysis was to represent the uncertainty 
in θ '(t), introduced by the imperfect match between θ(t) 
and the proxy ϕ(t). We did this by simulating multiple 
time series 𝛉' for a given set of observations 𝛟; each sim-
ulated 𝛉' represented one possible set of values with cor-
relation ρ to 𝛟, and by simulating population dynamics 
for each 𝛉' we obtained a distribution of possible out-
comes N'(t). To simulate vector 𝛉' with correlation ρ to 
vector 𝛟, we first assumed that the linear relationship 
between θ(t) and ϕ(t) is used to produce ∙𝛉, an estimate 
of 𝛉 that does not account for the correlation ρ between 
the two variables (for simplicity we let ∙𝛉 = 𝛟, but this 
does not affect the results). We then used the following 
procedure to obtain simulated vectors 𝛉':

𝛉'' = [∙𝛉  – ∙∙𝛉 ] ρ + R(0,sθ)[1 – ρ2]0.5

𝛉' = 𝛉'' –  ∙𝛉'' + ∙∙𝛉  ρ + ∙θ (1 – ρ) (7)

where R(0,sθ) is a vector of the same length as 𝛟 con-
taining values drawn from a normal distribution with 
mean 0 and standard deviation sθ. The first step pro-
duces a set of values with the correct standard deviation 
and correlation coefficient; the second step ensures that 
the mean of 𝛉' approaches the mean of  ∙𝛉 as ρ increases. 
The result of this is that if ρ is near 1, 𝛉' converges on ∙𝛉. 
When ρ is near 0, 𝛉' is simply a random normal distri-
bution with mean ∙θ and standard deviation sθ, the best 
available prior estimates for those quantities. Note that 
in this effort we are accounting only for process error in 
𝛟 and error introduced by the strength of correlation ρ 
(represented by the distribution of 𝛉'); we do not directly 
consider the effects of observation error in any of these 
processes or in the measurement of N(t).
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ϕ and standard deviation sθ. For each time series 𝛟* we 
simulated 100 different predicted time series 𝛉 ', given 
a particular value of ρ. We also simulated an additional 
time series 𝛉* that was designated the ‘actual’ time series. 
This produced a distribution of 100 possible values of 
N'(t) for years t = 1 to 10 for comparison to a single 
‘actual’ N*(t), repeated for 100 different realizations of 
the 𝛟* and N*(t) time series. This procedure was exe-
cuted for a range of values of LEPpre and cvθ in order to 
represent the effects of prior management and environ-
mental variation. For each combination of LEPpre and 
cvθ, we also modeled a range of values of LEPpost to sim-
ulate a decision analysis process wherein managers are 
presented with the range of possible outcomes for each 
management alternative. 

Hindcasting model. We suppose that in year t = τ 
in the future there is a desire to manage adaptively by 
determining whether the management action taken at 
t = 0 met expected goals (i.e., whether the chosen target 
value of LEPpost produced the desired change in spawn-
ing biomass). In this case the difficulty is distinguishing 
the effects of stochastic variability in recruitment from 
changes in spawning biomass due to management. There-
fore we simulate a “hindcasting” procedure, in which an 
observer at year τ models dynamics between years zero 
and τ to obtain a projection of the expected SSB at τ, 
accounting for recruitment variability in the intervening 
years (fig. 1). Note that we refer to this as hindcasting, 
but the hindcasting occurs from year τ (“future”) back 
towards year 0 (“present”) rather than from year 0 back 
towards years t < 0 (“past”).

The population density N(τ) is now observable (at 
least for ages a ≥ ac ), but 𝛉 for years 0 – τ is unknown. 
We estimated the distribution of N'(τ) using a procedure 
similar to that in the forecasting model. Starting with the 
same estimate of density at N'(0) used in the forecast-
ing model, the observed values 𝛟 for years 0 to (τ – 1) 
were used to simulate 100 different possible time series 
𝛉', which were used in turn to obtain a distribution of 
values for N'(τ). As before, the values of N'(τ) for ages 
≥ ac were constrained to be equal to the observed values 
in N*(t), and the entire procedure was performed for 
100 different time series of N*(t).

Together these forecasting and hindcasting analyses 
are similar to a management strategy evaluation, in that 
we consider the ability of managers to make correct 
inferences about fishery stock status in the face of envi-
ronmental process error. However, unlike typical man-
agement strategy evaluations analyses, we only consider 
the consequences of a single change in management 
strategy (at time t = 0) and examine both the success 
of decision analysis at that time and managers’ ability to 
detect the consequences of that action at an arbitrary 
point in the future.

target are said to be overfished and the fishery may be 
curtalied during a stock rebuilding phase. Henceforth 
we will express spawning biomass as a proportion of the 
unfished maximum (this is often referred to as ‘spawn-
ing depletion’). With CRT = 0.25, MSY will actually 
occur at approximately LEP = 0.27 and SSB = 0.35. 
With those equivalencies in mind, we report SSB as the 
response variable in model analyses in order to approxi-
mate the type of data that would be used in actual man-
agement scenarios.

Forecasting model. In the forecasting scenario, we 
simulated a decision analysis process at year t = 0 and 
project the outcome (in spawning depletion) of differ-
ent LEPpost targets at years t = 1, 2, ...10. These estimates 
would provide decision makers with estimates (and predic-
tion intervals) of which values of LEPpost would produce 
the desired change in spawning depletion within certain 
time windows. This type of analysis would typically make 
forecasts over time periods greater than 10 years, but the 
shorter window is suitable for our purposes. 

The first difficulty encountered in making this type 
of short-term projection is that the starting conditions,  
i.e., the full vector N(0), must be specified, even though 
the age classes younger than ac are unobserved. Those 
pre-recruit age classes depend on the values of θ(t) at 
times (–ac) ≤ t < 0. To obtain the best estimate of N(0), 
we first used the values of M and Fpre to back-calculate 
N'(–ac – 1) (i.e., ac + 1 years in the past) from age classes 
a > ac in N*(0) (as mentioned earlier, an ‘actual’ time 
series of N*(t) was simulated first). This method leaves 
the age classes A – ac to A in N'(–ac – 1) empty. We 
then obtain θ'(t) from ϕ(t) for the period –(ac + 1) ≤ t 
< 0, and use those values of θ'(t) and the starting con-
ditions N'(–ac – 1) to simulate dynamics forward for ac 
years to obtain a full estimate of all age classes in N'(0) 
(fig. 1). Values for a ≥ ac in N'(0) are then replaced with 
the actual values observed in N*(0).

To forecast forward in time from N'(0), we simulated 
100 different time series 𝛟* for t = 0, 1, ... 9 using 
random draws from a normal distribution with mean  

Figure 1. Diagram illustrating difference between forecasting and hindcast-
ing predictions. In the forecasting approach, an observer in year 0 uses infor-
mation on ϕ from years t < 0 (hatched region) to predict population dynamics 
in the years 0 > t ≥ τ (gray region). In the hindcasting approach, an observer 
in year τ uses information on ϕ from years t ≥ 0 to predict population dynam-
ics in the years 0 > t ≥ τ.
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we considered only two different MPA configurations. 
The primary set of results were generated for MPAs 
that conformed to size and spacing guidelines from the 
California Marine Life Protection Act initiative (CDFG 
2008): MPAs were 10 km wide and separated by 30 km 
of fished area. This produced MPAs that covered 25% 
of the coastline. For comparison with a smaller MPA 
scenario, we also simulated a coastline with 3 km wide 
MPAs, covering 7.5% of the 40 km coastline.

Larval dispersal was assumed to be purely diffusive 
and described by a Gaussian dispersal kernel with zero 
mean displacement a standard deviation d. Hereafter, 
d is referred to as “dispersal distance.” For this type of 
model, the nature of deterministic population persistence 
depends on the spatial scale of movement relative to 
MPA size: if the scale of larval dispersal is much smaller 
than the scale of MPA width, then populations tend 
to exhibit self-persistence and MPAs are self-sustaining 
units. If the spatial scales of larval dispersal and/or adult 
home range movement are much larger than MPAs, then 
persistence depends on connectivity over space across 
multiple generations, termed a network effect, and is 
more sensitive to the fraction of the coastline in MPAs 
than to MPA size (Hastings and Botsford 2006; Moffitt 
et al. 2009; White et al. 2010). To capture this range of 
model behavior, we modeled four different life history 
scenarios, including each combination of long and short 
adult and larval dispersal distances (d = 5 km or d = 40 
km and h = 0.1 km or h = 10 km). 

In addition to the case of a simple homogenous coast-
line, the dynamics of which are well understood in deter-
ministic models (e.g., Botsford et al. 2001; White et al. 
2010b), we also considered a case in which the coastline 
has a recruitment ‘hotspot’ or retention zone. It is gener-
ally recommended that MPAs be placed in locations with 
high recruitment (e.g., Halpern and Warner 2003; Rob-
erts et al. 2003) and there is some evidence from models 
that this strategy may be successful (White et al. 2010a), 
but such hotspots could amplify the effects of variable 
recruitment. We modeled the recruitment hotspot sce-
nario by creating an oceanographic retention zone fol-
lowing the procedure for scenario “B” in White et al. 
(2010a): inside the retention zone—which was assumed 
to be contiguous with the MPA—the standard devia-
tion of the Gaussian dispersal kernel was d/2 instead of 
d. This produces a higher degree of larval retention (and 
less spillover) in that area. We did not consider the case 
of spatial variation in recruitment, since recruitment pat-
terns of nearshore California fishes are often coherent 
over large spatial scales within a year, even if the overall 
magnitude varies (Caselle et al., this issue).

We considered two types of output in the spatial 
model, both of which approximate commonly used mea-
sures of MPA effectiveness (Lester et al. 2009). The first 

Spatial model
We then considered the case of spatial management, 

including the use of no-take marine protected areas 
(MPAs). This introduces several changes into the model: 
D is now an n × n matrix of dispersal probabilities. We 
assumed that demographic parameters were constant 
across all n populations, and that the fishing rate, F, was 
also constant across space (except that F = 0 inside any 
MPA). Adult fish can move inside home ranges, so fish 
that settle inside MPAs can move across MPA boundaries 
and experience fishing pressure. We assumed that home 
range movement follows a Gaussian distribution with 
mean 0 and standard deviation h/2, so that fish spend 
95% of their time within a radius h of their settlement 
location (cf. Moffitt et al. 2009; Freiwald 2009). Then 
the fishing pressure of a fish with home range centered 
at spatial cell i is given by 

   1  ∞    4(x – x0)2   ∙Fi =   ∫ –∞
 cx Fx  exp  –   dx

   h∙ π/2    ∙  h2 ∙  (7)

where ∙Fi  is the effective fishing rate experienced by an 
individual with a home range centered at spatial cell i, 
Fx is the fishing rate at location x, cx = 0 for reserves and 
1 for fished areas, and x0 is the center of cell i, and the 
integration is made over one-dimensional space x. The 
effective fishing rate ∙Fi was then used to calculate LEPi 
and the expected fishery yield of recruits settling at each 
cell i. This is similar to the approach taken by Moffitt et 
al. (2009), but with a Gaussian rather than uniform dis-
tribution of home range movement.

We assumed a spatial domain consisting of a linear 
coastline with homogenous habitat. The coastline was 
simulated as a repeating unit of 40 spatial cells represent-
ing 40 km of coastline; dispersing larvae and adult home 
ranges wrapped around the edge of the domain, elimi-
nating edge artifacts and making the coastline effectively 
infinite (very similar results would be obtained on a very 
long non-infinite coastline, but our approach is com-
putationally much simpler). In principle, model results 
should be sensitive to this assumption; if the domain 
had absorbing boundaries then a species with long lar-
val dispersal distances should lose many larvae off of the 
edge of the domain. This would results in lower over-
all larval replenishment and make it less likely that the 
species would persist. However, as described above, the 
model is parameterized such that the persistence thresh-
old is precisely given by Equation 6, regardless of losses 
due to larval survival or transport processes. Therefore, 
we have avoided any sensitivity to assumptions about 
domain boundaries. 

While MPA size and spacing have been examined for 
protected populations (e.g., White et al. 2010b), we were 
concerned with the effects of recruitment variability, so 
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increase in SSB relative to that projection. Therefore, the 
spatial model was run for 3 values of LEPpost (0.2, 0.35, 
0.5 ranging from overfished to sustainably fished), just as 
in the nonspatial model. Model performance was evalu-
ated in terms of its ability to predict the correct log SSB 
ratio and distinguish among alternative log SSB ratios. 

ReSUlTS

Nonspatial model
An example of the population dynamics forecasting 

model is provided in Figure 2, with lifetime egg produc-
tion prior to t = 0, LEPpre, equal to 0.2, and then LEPpost 
= 0.35 after t = 0, for a range of values with the correla-
tion strength of the proxy, ρ, and variability in larval sur-
vival, cvθ. In each panel, the range of projected outcomes 
for t = 1–10 years in the future is shown relative to the 
actual trend in spawning stock biomass, SSB*(t), for a 
typical realization of actual larval survival values 𝛉. When 
cvθ was very low, dynamics were nearly deterministic, so 
incorporating information from the physical proxy did 
not improve model forecasting substantially (fig. 2a–c). 
Projections of SSB '(t) had narrow prediction intervals 
that usually contained the actual value SSB*(t), even 
when ρ = 0 (fig. 2a). As cvθ increased, the proxy afforded 
a larger improvement in predictive skill (fig. 2d–i). For  
cvθ = 1, the predicted range of SSB'(t) deviated from the 
actual value of SSB*(t) in the absence of a proxy (ρ = 
0); that is, the model incorrectly forecasted dynamics 
just 3–4 years into the future (e.g., fig. 2d). However, 
the range of model projections followed SSB*(t) much 

is the log of the ratio of SSB after:before MPA imple-
mentation for a location inside the MPA. This measure 
captures the trajectory of increase (or decrease) in bio-
mass inside the MPA relative to the baseline situation 
in t = 0. We report the log after:before SSB ratio for 
location x = 5, in the center of the MPA. The second 
metric is the log of the ratio of SSB at a location inside 
the MPA to SSB at a location outside the MPA. This 
metric is an attempt to account for large-scale environ-
mental variability (such as variability in θ(t)) that might 
dampen the effects of the MPA over short time scales 
(as measured by the after:before comparison), under the 
assumption that a well-performing MPA will still con-
tain higher biomass than a fished location. In the 10 km 
MPA scenario we report this log inside:outside ratio for 
locations x = 5 (inside) and x = 25 (outside); for the 
3 km MPA scenario we used locations x = 2 (inside) 
and x = 17 (outside). 

The management scenario for the spatial model is 
similar to that in the nonspatial model: we assume that 
a population has been fished for 30 years at the level 
LEPpre = 0.2 (i.e., overfished). In year t = 0 (the present 
day), managers choose to implement an MPA network 
along the coastline. At the same time, they also choose 
a new target value of LEPpost for the remaining fished 
areas of the coast. The level of fishing outside the MPA 
can greatly affect MPA performance, especially for spe-
cies with large scales of larval or adult movement (White 
et al. 2010b). Thus projections of MPA performance 
must specify the expected level of LEPpost, and adaptive 
management of MPAs must account for the observed 

Figure 2. Time series from the nonspatial forecasting model. Panels depict the time series of actual spawning stock biomass (SSB*; solid line) as well as the mean 
(dashed line) and 95% prediction interval (gray area) of model projections (SSB') for a particular combination of variability in larval survival (cvθ) and the correlation 
(ρ) between actual larval survival and a physical proxy. Model projections are based on an initial observation of the fished population at time t = 0; for larger values 
of ρ, the model projections incorporate increasingly better proxy-derived estimates of the initial density of unfished age classes. The population was being over-
fished prior to t = 0 (LEPpre = 0.2) and is then switched to sustainable fishing (LEPpost = 0.35). 
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additional information on pre-recruit cohorts, because 
they were all spawned after t = 0. Consequently, the 
range of model outcomes became wider. Note also that 
simulations with low noise (cvθ ≤ 1) exhibited an over-
all increase in SSB, consistent with a decrease in fishing 
switching from LEPpre = 0.2 to LEPpost = 0.35, whereas 
in the higher-noise scenario (cvθ = 10) this switch did 
not produce an obvious increase in SSB.

The predictive skill of model projections has two 
important components. First, projections must be suf-
ficiently precise (i.e., narrow prediction intervals) so 
that the outcomes of alternative management scenarios 
(LEPpost) can be distinguished within a decision analysis 
setting at time t = 0. Otherwise, model uncertainty over-
whelms the scope of potential management outcomes. 
Second, projections must be sufficiently accurate that the 
prediction intervals of projections for a particular man-
agement scenario (LEPpost) encompass the actual value 
for that management outcome, and not the value for 
other management outcomes. If not, the model might 
indicate that the observed spawning stock biomass cor-
responded to an incorrect level of LEPpost. That is, the 
model would be unable to account for process error in 
the dynamics, and would make an incorrect prediction. 

To illustrate these two components of model skill, 
Figure 3 shows the mean and 95% prediction interval 
for forecast model projections for a range of values of  
LEPpost, correlation strength ρ and variability in lar-
val survival cvθ at 10 years post-decision, again using a 
single model realization for illustration (LEPpre = 0.2). 
When variability in survival was low and dynamics were 
nearly deterministic (fig. 3a), model projections for each 
value of LEPpost did not overlap and closely matched the 
actual value at all time steps, regardless of the correlation 
strength of the proxy. These results also illustrate the gen-
eral deterministic trend that LEPpost < 0.35 led to addi-
tional declines in SSB while LEPpost ≥ 0.35 produced 
an increase in SSB. This result may be relevant not only 
for the rockfish model depicted in this case but may be 
more generally applicable. 

For an intermediate level of variability (cvθ = 1; fig. 3b), 
the prediction intervals of model projections for different 
values of LEPpost rarely overlapped, even for low corre-
lation strength ρ. However, higher values of ρ produced 
a closer match between the model projection spawning 
stock biomass SSB' and the actual value SSB*.

When there was much greater natural variability in 
larval survival (cvθ = 10; fig. 3c), the 95% prediction 
intervals for SSB '(t) under different values of LEPpost 
overlapped considerably for low values of the correla-
tion strength ρ, so that a decision analysis effort at t = 0 
would predict that it is impossible to distinguish the 
effects of very different fishing rates on SSB over this 
time scale. Similarly, the prediction interval for a given 

more closely with higher values of ρ. Similar patterns 
held for a much higher level of variability in survival, 
cvθ = 10, but the range of projected model outcomes 
was much higher overall in this case, so projections were 
less precise but the range of values usually contained 
SSB*(t) (fig. 2g–i). Regardless of the value of cvθ and 
ρ, the improvement in predictive skill afforded by the 
proxy fell off after approximately 5 years, as indicated by 
a widening of the prediction interval around the model 
projection. This corresponds to the age at recruitment to 
the fishery, ac. After ac years, all of the pre-recruit cohorts 
present at t = 0 and estimated from observations of the 
physical proxy ϕ prior to t = 0 had entered the fishery. 
After this point (t > ac), the proxy cannot provide any 

Figure 3. Results from the nonspatial forecasting model showing the deviation 
of model projections from actual values. Points depict the projected spawn-
ing stock biomass (SSB') at t = 10 years after fishery management switched 
from LEPpre = 0.2 (overfishing) to an alternative level of fishing (LEPpost): 0.5 
(light gray diamonds) or 0.2 (black circles). Projections are shown for a range 
of values of the correlation ρ between actual larval survival and a physical 
proxy. Error bars indicate 95% prediction interval for model projections. Solid 
lines indicate actual SSB* values for the corresponding value of LEPpost. The 
level of variability in natural survival, cvθ, differs among panels as indicated. 
SSB values are presented as deviations from SSB at time t = 0; no deviation 
indicated by dashed horizontal line. For decision analysis at t = 0, the quan-
tity of interest is the degree of overlap in the range of projected outcomes for 
different levels of LEPpost. For adaptive management at t > 0, the quantity of 
interest is whether the range of projected outcomes for a particular LEPpost 
contain the actual value.
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period t = 0 to t = ac constrain the model trajectory in 
later years, and slight errors during that early period can 
propogate through time, producing larger errors later 
(compare fig. 2e to 2f ). 

Results similar to those shown in Figure 3 for the 
forecasting model are also obtained in the hindcasting 
model (fig. 4), in which values of the physical variable 
ϕ(t) from years t = 1–10 are used as a proxy for θ(t) in 
those years. The notable differences are that predic-
tion intervals around model projections are generally 
smaller, and projections always converge towards SSB* 
as ρ approaches 1.

The general patterns illustrated in Figures 2–3 are 
summarized for 100 different realizations of the actual 
larval survival time series 𝛉* in Figure 5. In order to 
summarize the distribution of model projections for 
each model realization (i.e., each set of actual values 𝛉*), 
the mean and standard deviation of predicted SSB' were 
compared to the actual value SSB* using a standard nor-
mal deviate: z = ( SSB ' – SSB*)/sSSB '. We then calculated 
the average z-statistic across all model realizations for a 
particular combination of LEPpre, LEPpost, variability in 
larval survival cvθ, correlation strength ρ, and time t. The 
p-value corresponding to this z-statistic indicates the 
probability that the actual value of SSB* falls within the 
distribution of projected SSB' values; that is, the accu-
racy of the projections. Examination of these p-values 
(fig. 5a–e) indicates that model accuracy is maximal for ρ 
> 0.6 (note that the contour lines grow closer just above 
ρ > 0.6) and t ≤ 4 (recall that the age at recruitment to 
the fishery, ac, is 4). The p-values fall off sharply below 
the value of ρ > 0.6 over short time scales. Over longer 
time scales (t > 4), model accuracy is relatively constant 
across all values of ρ, but decreases somewhat for higher 
values of ρ after t = 8. This general pattern holds across 
all levels of variability cvθ, and correspond to the patterns 
noted in Figure 3 for a single model realization.

We also employed the same z-statistic procedure to 
compare SSB ' for LEPpost = 0.35 to the actual value of 
SSB* for LEPpost = 0.2. In this case, the p-value mea-
sures the probability that an incorrect value of SSB* 
would fall within the distribution of SSB ' values, that is, 
the precision of the model projections. In this case, the 
p- values were uniformly low across all values of cor-
relation strength ρ for low levels of natural variability 
(fig. 5f–h). For higher levels of variability (cvθ ≥ 5), the 
pattern of this metric of model skill roughly matched 
that for the comparison of SSB ' to the correct SSB*: 
p-values were high for low values of ρ early in simula-
tions (indicating high overlap with the incorrect value) 
and moderate (p ~ 0.15) for most values of ρ in later 
years (fig. 5i–j). The major difference from the compar-
ison shown in Figure 4a–e is that model skill remained 
high for high values of ρ (ρ ≥ 0.8) across all time-steps. 

projection overlapped multiple values of SSB*(t). Thus it 
would be impossible to determine from examining SSB 
at year 10 whether the desired value of LEPpost was being 
achieved, because uncertainty about the variability in 
recruitment would be too large. However, the prediction 
intervals on model projections diminished with increas-
ing ρ, and both the accuracy and precision of model pro-
jections were much greater for ρ > 0.8. 

Interestingly, over longer time scales (e.g., t = 10), it 
was possible for a strong correlation between the proxy 
and larval survival to actually introduce error into the 
model projection and produce a greater deviation from 
the actual value. This appears to occur because the rel-
atively narrow prediction intervals on SSB' during the 

Figure 4. Results from the nonspatial hindcasting model showing the devia-
tion of model projections from actual values. Each series of points depicts the 
projected spawning stock biomass (SSB') at t = 10 years after fishery manage-
ment switched from LEPpre = 0.2 (overfishing) to an alternative level of fishing 
(LEPpost): 0.5 (light gray diamonds) or 0.2 (black circles). Projections are shown 
for a range of values of the correlation ρ between actual larval survival and a 
physical proxy. Error bars indicate 95% prediction interval for model projec-
tions. Solid lines indicate actual SSB* values for the corresponding value of 
LEPpost. The level of variability in natural survival, cvθ, differs among panels as 
indicated. SSB values are presented as deviations from SSB at time t = 0; no 
deviation indicated by dashed horizontal line. For decision analysis at t = 0, 
the quantity of interest is the degree of overlap in the range of projected out-
comes for different levels of LEPpost. For adaptive management at t > 0, the 
quantity of interest is whether the range of projected outcomes for a particular 
LEPpost contain the actual value.
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SSB was 3× greater for the model runs with small 
home range size compared with large (fig. 7a, b), but 
differed little between the two larval dispersal distances. 
The apparent lack of an effect of dispersal distance d is 
because the MPA in these model runs was large enough 
to be self-persistent for small d and covered enough area 
to be network persistent for large d (when home range 
size was small), so the population inside the MPA was 
persistent in either scenario. However, LEPpost did affect 
overall SSB, even inside the MPA, for all movement 
scenarios. The effects of LEPpost, and the tendency for 
recruitment variability to obscure those effects, were 
amplified with greater adult movement. Notice that 
for LEPpost = 0.2, the large-home-range case was not 
persistent despite the MPA (i.e., biomass continues to 
decline after MPA implementation), but with a mod-
erate amount of recruitment variability (cvθ = 1 in this 
example) the decline was not immediately evident in all 
simulations (fig. 7c, d). 

The general patterns observed in the diffusive disper-
sal case were similar to those in the retention zone sce-
nario (fig. 8), although densities within the MPA were 
slightly elevated by the shorter home ranges and shorter 

As in the example shown above (fig. 4), the overall 
behavior of the hindcasting model was similar to that 
depicted for the forecasting model in Figure 4, but with 
smaller prediction intervals and thus improved model 
performance (fig. 6). Additionally, high values of ρ were 
uniformly advantageous across all time-steps, and did 
not lead to a decrease in model performance at t = 10 
(compare upper left corners of Figure 5a–e and Figure 
6a–e). 

Here we have presented results only for the case of 
LEPpre = 0.2, in which the pre-decision population was 
undergoing overfishing. Model results for LEPpre = 0.4 
(sustainable fishing) exhibit nearly identical patterns of 
model accuracy with respect to ρ, cvθ, and t, and for brev-
ity we simply state this result without a figure.

Spatial model
An example of the behavior of the spatial model with 

diffusive dispersal and a 10 km wide MPA is shown 
in Figure 7. Overall, adult movement (defined by adult 
home range radius h) had a much greater effect on the 
spatial pattern of SSB than did variation in larval dis-
peral distance (defined by dispersal distance d). Indeed, 

Figure 5. Results from multiple realizations of the nonspatial forecasting model showing the predictive skill of model projections. Model results were summarized 
as the standard normal deviate (z-statistic) for the deviation of the mean model projection from the correct actual value (a–e) or the actual value for an alternative 
level of LEPpost (f–j). Each z-value was then translated into a p-value, representing the probability that the range of model projections contains the correct value 
(a–e) or an incorrect alternative value (f–j). Each panel shows the range of outcomes over time after t = 0 for increasing values of the correlation of actual larval sur-
vival rates to a physical proxy (ρ) and a given level of natural variability in larval survival (cvθ). Note that shading in panels (a–e) is opposite that in (f–j); in both cases 
darker values indicate better model performance.
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the center of the fished area (fig. 9d–f ). The general  
patterns of accuracy and precision of the model projec-
tions were similar to those observed in the nonspatial 
model: the signal of deterministic change in SSB' due to 
LEPpost increased over time, that signal was more difficult 
to detect as recruitment variability (cvθ) increased, and 
higher values of ρ increased the precision of model pro-
jections. As in the nonspatial model, the increase in pre-
cision afforded by the forecast estimate of θ(t) declined 
after t = 5 y (t = tc). The major new pattern evident in 
the spatial model was that the value of LEPpost had a 
strong effect on the inside:outside ratio (fig. 9d–f) but 
only a minimal effect on the after:before ratio (fig. 9a–c; 
there was a slightly greater effect of LEPpost in the large 
home range scenario). There was also a strong effect of 
adult home range movement on the two response ratios, 
as summarized below.

As in the nonspatial model, we summarized the accu-
racy and precision of the spatial model results using 
z statistics to quantify whether A) model projections 
bracketed the actual value, and B) projections brack-
eted incorrect values associated with other values of 

larval dispersal distances. Populations with large home 
ranges were persistent in the LEPpost = 0.2 case when 
larval dispersal was short (note the slightly increasing 
SSB in Figure 8c) but not long (fig. 8d); in the former 
case the additional recruitment afforded by the retention 
zone inside the MPA was sufficient to offset the fishing 
of individuals moving outside the MPA boundaries.

Evaluations of MPA performance typically take either 
or both of two forms: an after:before comparison of bio-
mass within an MPA and an inside:outside comparison 
of biomass in the MPA relative to that in a fished control. 
The after:before comparison seeks to determine whether 
biomass is recovering inside the MPA, but that signal can 
be obscured by recruitment variability. The inside:outside 
comparison is intended to control for large-scale vari-
ability in recruitment and other processes, but assumes 
that there is a substantial difference in fishing pressure 
inside vs. outside. We simulated both of these types of 
comparisons. An example is given in Figure 9, showing 
the log ratio of SSB ' after:before for a location inside 
the MPA (fig. 9a–c) and log ratio of SSB' inside:outside 
measured at a location in the center of the MPA and 

Figure 6. Results from multiple realizations of the nonspatial hindcasting model showing the predictive skill of model projections. Model results were summarized 
as the standard normal deviate (z-statistic) for the deviation of the mean model projection from the correct actual value (a–e) or the actual value for an alternative 
level of LEPpost (f–j). Each z-value was then translated into a p-value, representing the probability that the range of model projections contains the correct value 
(a–e) or an incorrect alternative value (f–j). Each panel shows the range of outcomes over time after t = 0 for increasing values of the correlation of actual larval sur-
vival rates to a physical proxy (ρ) and a given level of natural variability in larval survival (cvθ). Note that shading in panels (a–e) is opposite that in (f–j); in both cases 
darker values indicate better model performance.
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Figure 7. Results from spatial forecasting model with spatially homogenous 
larval dispersal and a moderate level of variability in larval survival (cvθ = 1). 
The mean value (across all simulations) of the actual value of SSB* (relative to 
the unfished maximum) at each time is shown for LEPpre = 0.2 and LEPpost = 
0.2, at t = 0 (solid lines), 5 (dashed lines), and 10 (dot-dash lines) years after 
MPA implementation. Each panel shows results for a model species with a 
different combination of larval dispersal distance (d) and home range diam-
eter (h): a) short d, short h (d = 5 km, h = 0.1 km); b) long d, short h (d = 40 
km, h = 0.1 km); c) short d, long h (d = 5 km, h = 10 km); d) long d, long h (d 
= 40 km, h = 10 km). Gray shading indicates location of MPA within the 40 km 
repeating unit of infinite coastline.

Figure 8. Results from spatial forecasting model with a larval retention zone 
and a moderate level of variability in larval survival (cvθ = 1). The mean value 
(across all simulations) of the actual value of SSB* (relative to the unfished 
maximum) at each time is shown for LEPpre = 0.2 and LEPpost = 0.2, at t = 0 
(solid lines), 5 (dashed lines), and 10 (dot-dash lines) years after MPA imple-
mentation. Each panel shows results for a model species with a different com-
bination of larval dispersal distance (d) and home range diameter (h): a) short 
d, short h (d = 5 km, h = 0.1 km); b) long d, short h (d = 40 km, h = 0.1 km); 
c) short d, long h (d = 5 km, h = 10 km); d) long d, long h (d = 40 km, h = 10 
km). Gray shading indicates location of MPA within the 40 km repeating unit 
of infinite coastline. The MPA contains the larval retention zone, inside which 
larval dispersal distance d is reduced by 50%.

Figure 9. Results from the spatial forecasting model 
with spatially homogenous dispersal showing the 
deviation of model projections from actual values. 
Each series of points depicts the projected spawning 
stock biomass (SSB') at t = 10 years after MPAs were 
implemented and fishery management switched from  
LEPpre = 0.2 (overfishing) to an alternative level of fishing 
(LEPpost): 0.5 (light gray diamonds) or 0.2 (black circles). 
Projections are shown for a range of values of the cor-
relation ρ between actual larval survival and a physical 
proxy. Error bars indicate 95% prediction interval for 
model projections. SSB is expressed as (a–c) the log 
ratio of SSB before:after MPA implementation for a loca-
tion inside the MPA (t vs t = 0), or (d–f) the log ratio 
of SSB inside:outside the MPA at the same time. Solid 
lines indicate actual values for the corresponding value of  
LEPpost. The level of variability in natural survival, cvθ, 
differs among panels as indicated. These results were 
obtained using the forecasting model for a species with 
long larval dispersal distance (d = 40 km) and short adult 
home range (h = 0.1 km); the MPA was 10 km wide.
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variability cvθ (fig. 10f–j). This lack of precision is a con-
sequence of the minimal deterministic effect of differ-
ent LEPpost values on the after:before ratio in that initial 
time period. However, in high-noise (cvθ ≥ 1) scenarios, 
an informative proxy (ρ > 0.8) did improve the preci-
sion of model projections after t = 8 y (fig. 10h–j). That 
is, the value of LEPpost had a long-term effect on MPA 
performance, but the trajectories of the after:before ratio 
associated with different values of LEPpost were only dis-
tinguishable within a reasonable time scale (t < 10 y) 
when an effective proxy for θ(t) was used.

The overall model skill in the short home range case 
was higher when SSB' was measured as the inside:outside 
ratio (fig. 11). Using that metric, forecast projections 
always had a high degree of overlap with the value asso-
ciated with the correct LEPpost (fig. 11a–e) and very 
little overlap with ratios associated with alternative val-
ues of LEPpost (fig. 11f–j), except for very high values of 
cvθ (fig. 11i–j). This result suggests that the inside:outside 
ratio does appear to control for environmental stochas-
ticity when testing for the effects of an MPA. None-

 LEPpost. Even though the MPAs modeled in these sce-
narios were big enough to support a persistent popu-
lation in most cases (regardless of LEPpost), the value 
of LEPpost affects the SSB inside MPAs (cf. figs. 7–9). 
An adaptive management evaluation of MPA perfor-
mance will require a model projection of how much 
SSB should have increased inside (or outside) the MPA. 
We first examine the results obtained from the diffusive 
dispersal scenario. There was essentially no effect of lar-
val dispersal distance on the z statistics (data not shown), 
so we focus on the results for the two home range sizes 
and long larval dispersal distances (d = 40). For the 
short home range case (h = 0.1; fig. 10), forecast projec-
tions of the after:before SSB' ratio always had consider-
able overlap with the ratio associated with the correct  
LEPpost (fig. 10a–e), although the accuracy was some-
what better for correlation strength ρ > 0.8 over short 
timescales (t < 5 y). The distribution of after:before SSB' 
ratios also had considerable overlap with ratios associ-
ated with alternative values of LEPpost in early years (t < 
6 y) for all values of correlation strength ρ and survival 

Figure 10. Results from multiple realizations of the spatial model with spatially homogenous dispersal showing the predictive skill of model projections for the 
ratio of SSB after:before MPA implementation. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 km) 
and short adult home range (h = 0.1 km); the MPA was 10 km wide. Model results were summarized as the standard normal deviate (z-statistic) for the deviation 
of the mean model projection of the SSB ratio for LEPpost = 0.35 from (a–e) the correct actual value for that level of LEPpost, or (f–j) the actual value for an alterna-
tive management scenario with LEPpost = 0.2. Each z-value was translated into a p-value, representing the probability that the range of model projections contains 
the correct value (a–e) or an incorrect alternative value (f–j). Each panel shows the range of outcomes over time after t = 0 for increasing values of the correlation 
of actual larval survival rates to a physical proxy (ρ) and a given level of natural variability in larval survival (cvθ). Note that grayscale in panels (a–e) is opposite that 
in (f–j); in both cases darker values indicate better model performance.
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values of survival variability cvθ and proxy correlation 
strength ρ (fig. 13a–e), and high precision for low values 
of cvθ (fig. 13f–g). However, when recruitment was more 
variable (cvθ ≥ 1) precision was very low except when 
an effective proxy (ρ ≥ 0.8) was used, although this only 
improved precision over short time scales (fig. 13h–j). 
This result is a consequence of home range movement 
tending to equalize biomass inside and outside of the 
MPA (e.g., fig. 7c–d). As a consequence, it would be dif-
ficult to distinguish successful from unsuccessful MPAs 
over short time scales using the inside:outside ratio 
unless an effective proxy were employed.

It is important to note that the use of the inside:outside 
ratio depends on the choice of sample locations. Com-
paring a location in the center of the MPA to a loca-
tion far outside of the MPA boundary—as we have 
done here—will produce the highest contrast. The 
inside:outside ratio will be closer to zero (i.e., less infor-
mative) if either inside or outside observations were 
made closer to the MPA edge, especially for species with 
larger home ranges. This effect can be seen in Figure 6, 
which shows how a large home range produces a larger 
zone over which high “inside” values transition to low 
“outside” values; making observations inside this transi-

theless, the forecasts had greater precision in high noise 
situations (cvθ > 1) when an effective proxy was used 
(ρ > 0.8; fig. 11i–j). 

The accuracy and precision of forecast projections 
were strikingly different for a species with a large home 
range (h = 10 km). This is because home range move-
ment dilutes the protection of an MPA, so that the 
change in biomass inside the MPA is more sensitive to 
the level of fishing outside (Moffitt et al. 2009), pro-
ducing a larger, more rapid divergence in SSB ' among 
alternative values of LEPpost. When forecasting the 
after:before SSB ' ratio, projections had far less over-
lap with the value associated with the actual LEPpost 
(fig. 12a–e) than in the small home range scenario, 
and use of a proxy with ρ > 0.8 yielded considerable 
improvement in accuracy over timescales shorter than 
tc (i.e., t ≤ 4 years). By contrast, the forecast after:before 
ratio had much less overlap with values associated with 
alternative LEPpost, and the proxy only improved preci-
sion over short time scales (t < 4 y) in high-variability 
scenarios (cvθ > 1; fig. 12f–j). 

When the response variable was the inside:outside 
SSB ' ratio, results were more similar to those for the 
small home range case: there was high accuracy for all 

Figure 11. Results from multiple realizations of the spatial model with spatially homogenous dispersal showing the predictive skill of model projections for the 
ratio of SSB inside:outside the MPA. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 km) and 
short adult home range (h = 0.1 km); the MPA was 10 km wide. Other figure details as in Figure 10.
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(h = 10 km, d = 40 km) was persistent with  LEPpost = 0.2 
in the retention zone scenario but not in the homogenous 
dispersal scenario. Despite the effects on population per-
sistence, the degree of retention that we modeled was not 
sufficient to substantially alter SSB' for the other life his-
tory combinations or values of  LEPpost we considered. 

To explore the importance of persistence on the use-
fulness of the proxy, we also simulated dynamics for a 
coastline with a much smaller, 3 km wide MPA. This 
MPA was too small to be self-persistent for any of the 
larval dispersal distances we considered, although larval 
production in the fished region was sufficient (under all 
values of LEPpost we considered) for the population to 
be persistent in all cases except for the long larval dis-
persal distance and large home range case (d = 40 km, 
h = 10 km). Despite the lack of self-persistence, results 
for the small MPA were nearly identical to those for the 
larger, 10 km MPA. The only noticeable difference was 
for the inside:outside comparison in the high d, high h 
scenario, in which the population continued to decline 
after MPA implementation for all values of LEPpost. As 
a consequence, it was difficult to distinguish alternative 
LEPpost scenarios unless there was very little variability 
in survival or the proxy correlation strength ρ was very 

tion zone will produce a lower inside:outside ratio. This 
issue is addressed more formally by Moffitt (2009).

As in the nonspatial case, running the model in hind-
cast mode improved the accuracy and precision of the 
model projections, and projections made with a high-ρ 
proxy were accurate over the entire 10-year period rather 
than just the initial 4–5 years after the change in fish-
ing pressure (i.e., t ≤ tc). For example, in the large-home 
range (h = 10 km), long larval dispersal (d = 40 km) 
case, the after:before comparison had greater precision 
and accuracy, and the latter did not drop off after t = 
4 y (this result is not portrayed in the figures). Similarly, 
the model skill for the inside:outside comparison was 
high for high values of ρ and cvθ over the entire 10-year 
period rather than the first 4 years only. 

In these simulations, there was very little effect of  
the larval retention zone on the efficacy of using the 
physical proxy, and results were generally similar to those 
with spatially homogenous dispersal. For comparison, 
the forecast after:before and inside:outside ratios for the 
short- and long-home range cases are shown in  Figures 
14–15. Larval retention can have a striking effect on 
 population persistence within MPAs (White et al. 2010a), 
and the large home range/short larval dispersal case  

Figure 12. Results from multiple realizations of the spatial model with spatially homogenous dispersal showing the predictive skill of model projections for the 
ratio of SSB after:before MPA implementation. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 
km) and large adult home range (h = 10 km); the MPA was 10 km wide. Other figure details as in Figure 10.
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models. First, incorporating information from the proxy 
was most useful when the correlation, ρ, between the 
proxy and larval survival was high; ≥ 0.8. Correlations this 
high or higher have been reported for real datasets (e.g., 
Caselle, this issue; Shanks, this issue), so this approach is 
promising for implementation. Second, when forecast-
ing for fishery management, the proxy only improves 
model accuracy out to approximately ac years, the time to 
recruitment into the fishery (a time period of 4–5 years 
in this model). After this point there is a sharp decline 
in accuracy, because the pre-recruit age classes predicted 
by the proxy at time t = 0 have entered the fished pop-
ulation, and there is no proxy information on later age 
classes (i.e. those that were spawned after t = 0). Accu-
racy falls sharply because the model simulations were no 
longer tracking the actual population trajectories, despite 
the well behaved narrow prediction intervals. 

Beyond this time (t > ac), the model prediction inter-
val expands, reflecting greater uncertainty about recruit-
ment year class strength, and because the interval is so 
large it once again tends to encompass the actual value. 
This anomaly is a feature of the forecast model, but not 
the hindcast model, for which information on larval sur-
vival is available after t = ac and model accuracy is more 

high; even with high ρ, the model skill was improved 
only during years 3–5 following implementation (these 
results are not portrayed in a figure).

DISCUSSION
Here we have outlined a general framework for 

incorporating physical proxy information into forecasts 
of recruitment year-class strength for fishery manage-
ment. Our modeling results illustrated how variability 
in larval survival can make it difficult to distinguish the 
effects of different fishing rates on spawning stock bio-
mass (SSB) and population persistence. Our proxy-based 
method may be useful because it accounts for some of 
this variability in order to obtain better projections of 
the response of a fished population to management deci-
sions. These results support the development of good 
proxies of recruitment strength for fishery management. 
We anticipate that the application and effectiveness of 
this modeling approach in a real management scenario 
will depend on species- and location-specific particulars 
and as we have shown here will depend on how well the 
proxy describes recruitment. 

Here we have found two consistent outcomes regard-
ing the use of a physical recruitment proxy in forecast 

Figure 13. Results from multiple realizations of the spatial model with spatially homogenous dispersal showing the predictive skill of model projections for the 
ratio of SSB inside:outside the MPA. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 km) and 
large adult home range (h = 10 km); the MPA was 10 km wide. Other figure details as in Figure 10.
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more, MPAs are politically contentious so there is often 
a short window for re-evaluation (e.g., 5 yr in California; 
CDFG 2008) within which recruitment variability could 
easily overwhelm any signal of an actual deterministic 
fishing effect within an MPA. 

Several authors have recently advocated using 
inside:outside ratios to avoid the problem of mini-
mal pre-monitoring (E. A. Babcock and A. D. MacCall, 
unpublished manuscript). Indeed, the inside:outside ratio 
can be predicted by models relatively well, even without 
a larval survival proxy, especially in low- variability cases 
(figs. 11 and 13). However, the use of the inside:outside 
ratio as a decision rule is predicated on the assumption 
that biomass inside the MPA is close to the unfished 
value or differs dramatically with the biomass inside the 
MPA at the final census period (e.g., 5 years). This will be 
true only over longer time scales and may not be true for 
all species (e.g., species with large home ranges; fig. 7c; 
White et al. 2010b). Additionally, the inside:outside ratios 
are sensitive to other factors which we did not address 
in this study, including the distribution of suitable habi-
tat, the spatial distribution of fishing effort, and even the 
locations at which observations are made. Over short 
time scales following implementation, or in the case of 

consistent across time. Thus the use of the proxy is even 
more advantageous in hindcasting situations over lon-
ger periods of time. The time lag in recruitment to the 
fishery and the width of the prediction interval will be 
specific to the species examined and the time to enter 
the fishery. In the example modeled here, kelp rockfish 
enter the fishery after 4 years, making forecasts beyond 
this time less reliable. By contrast, a species such as red 
abalone (Haliotis rufescens) enters the fishery in 11 years 
(Rogers-Bennett et al. 2007), potentially making proxy-
derived forecasts reliable over a longer time period. 

It is important to note that our models did not 
account for observation error in the measurement of 
either physical variables, year class strength, or biomass. 
It is possible that actual proxies would require a corre-
lation strength considerably better than 0.8 in order to 
overcome errors introduced by observation and possibly 
other processes not included in our model.

The use of a recruitment proxy could be especially 
valuable for short-term decision making with regard to 
MPAs. There is often little baseline observation data avail-
able prior to MPA implementation, especially data that 
are spatially explicit and collected both inside and out-
side of MPA sites (e.g., Hamilton et al. 2010). Further-

Figure 14. Results from multiple realizations of the spatial model with a larval retention zone showing the predictive skill of model projections for the ratio of SSB 
after:before MPA implementation. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 km) and large 
adult home range (h = 10 km); the MPA was 10 km wide. The MPA contains the larval retention zone, inside which larval dispersal distance d is reduced by 50%. 
Other figure details as in Figure 10.
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predictions that account for fishing rates outside MPAs. 
However, while the long-term deterministic trends in 
biomass associated with different fishing rates tend to 
be quite distinct (White et al. 2010b), our results show 
that stochastic variability in larval supply can make it 
difficult to discern those long-term trends from vari-
ability due to recruitment fluctuations over short time 
scales (e.g., fig. 7d; also see Moffitt 2009). Consequently, 
the predictions of deterministic models without proxy 
information should be used with caution in an adaptive 
management setting.

The Before-After Control-Impact (BACI) approach 
for detecting management effects is intended to con-
trol for the type of stochastic variation modeled here 
(Underwood 1994). However, our results suggest that 
the effectiveness of BACI depends on the life history 
of the species in question. For fishes with small home 
ranges, the before: after ratio had limited resolution.  
The prediction intervals of model forecasts for different 
levels of fishing (LEPpost) had considerable overlap, so it 
would be impossible to distinguish alternative outcomes 
(e.g., SSB might not differ significantly under different 
management scenarios) in an adaptive management set-

ineffective MPAs, management strategy evaluations sug-
gest that such ratio-based decision rules may produce 
unusual and incorrect results (E. A. Babcock and A. D. 
MacCall, unpublished manuscript). Consequently, we 
suggest there is value in using our proxy-based method 
to project results over the short time scales that are 
most relevant to adaptive management decisions. Ratios 
obtained from monitoring data could then be evaluated 
in the context of the expected trajectory of biomass 
inside and outside the MPAs, reducing the chance that 
managers draw incorrect inferences from the raw ratios 
in the absence of proxy information.

Prior modeling efforts have clearly demonstrated that 
the level of fishing outside MPA boundaries can have 
an effect on population persistence and biomass inside 
the MPA (Holland and Brazee 1996; Mangel 1998, 
2000; Botsford et al. 2001; White et al. 2010b), just as 
we found in our spatial model. This result is gener-
ally borne out by empirical findings that species tar-
geted by fisheries have a greater response to protection 
in MPAs (Micheli et al. 2004; Lester et al. 2009; Pelc 
et al. 2009; Hamilton et al. 2010). As a consequence, 
the adaptive management of MPAs must utilize model 

Figure 15. Results from multiple realizations of the spatial model with a larval retention zone showing the predictive skill of model projections for the ratio of SSB 
inside:outside the MPA. These results were obtained using the forecasting model for a species with long larval dispersal distance (d = 40 km) and large adult home 
range (h = 10 km); the MPA was 10 km wide. The MPA contains the larval retention zone, inside which larval dispersal distance d is reduced by 50%. Other figure 
details as in Figure 10.
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in cases of adults with short home-ranges. Our approach 
could be applied to adaptive management efforts over 
short time scales. Numerous authors have documented 
correlations between physical factors and recruitment 
year class strength that exceed this level of correlation. 
Several promising examples emerged from this CalCOFI 
Symposium, including correlations of up to r = 0.99 
between annual settlement of KGBC rockfish (primarily 
kelp rockfish, Sebastes atrovirens) and a monthly upwell-
ing index (Caselle et al., this issue), and correlations 
between Dungeness crab (Cancer magister) recruitment 
and the timing of the spring transition (r = 0.97, exclud-
ing three recent outlier years) and the Pacific Decadal 
Oscillation (r = 0.73; Shanks et al., this issue). Indices 
related to upwelling and the Pacific Decadal Oscillation 
are likely to be informative for many nearshore fisheries 
on the U.S. Pacific coast, but any number of other envi-
ronmental indices may be useful for fisheries in other 
locations (e.g., Vance et al. 1985; Caputi et al. 2001; but 
see Myers 1998). Short-term predictive powers of these 
models may improve management performance more 
for extremely productive populations as opposed to less 
productive stocks (Walters 1989) and be more beneficial 
for populations with wide rather than narrow population 
fluctuations between years. It is precisely these types of 
fisheries that are challenging to manage. It seems obvi-
ous that ocean conditions have a large impact on recruit-
ment and yet traditional fishery management does not 
incorporate this information into management. In the 
United States, federal managers have called for the incor-
poration of physical parameters into models for adaptive 
management (e.g., the Fisheries And The Environment 
[FATE] program; http://fate.nmfs.noaa.gov/) and the 
framework provided here helps to address this goal. This 
work provides a first step towards incorporating prox-
ies of productivity driven by environmental forcing into 
modeling to improve fishery management. 
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