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Abstract: Many marine species exhibit temporal variation in individual growth. Yearly variation in growth has been iden-
tified for red abalone (Haliotis rufescens) in southern California, USA, but has not been previously incorporated into
growth models. In this study, Bayesian hierarchical models were developed to describe variability in growth rates for the
Johnsons Lee red abalone population. Although the Bayesian hierarchical modeling estimates are close to estimates of the
nonhierarchical highly parameterized model that assigns an estimate of parameters to each data period when the sample
sizes are high, the hyperparameters in the hierarchical model are more useful in incorporating the temporal variability into
the stock assessment. By ignoring temporal variability, confidence intervals of the estimates of growth can be unrealisti-
cally narrow, possibly leading to bias when these models are used for developing biological reference points such as F0.1,
Fmax, or Fx%. The use of a Bayesian hierarchical approach is generally suggested for future growth modeling and for per-
recruitment models that include growth when determining precautionary management decisions.

Résumé : Plusieurs espèces marines accusent des variations temporelles dans leur croissance individuelle. Des variations
annuelles de croissance ont été signalées chez les ormeaux rouges (Haliotis rufescens) dans le sud de la Californie, É.-U.,
mais elles n’ont jamais été incorporées aux modèles de croissance. Nous avons mis au point, dans notre étude, des modè-
les hiérarchiques bayésiens pour décrire la variation des taux de croissance dans la population d’ormeaux rouges de John-
sons Lee. Bien que les estimations produites par la modélisation hiérarchique bayésienne soient proches des estimations
d’un modèle non hiérarchique fortement paramétrisé qui assigne une estimation des paramètres à chaque période de don-
nées lorsque les tailles des échantillons sont fortes, les hyperparamètres du modèle hiérarchique sont plus commodes pour
incorporer la variabilité temporelle dans l’évaluation des stocks. Lorsqu’on néglige la variabilité temporelle, les intervalles
de confiance des estimations de la croissance peuvent être de façon irréaliste trop étroits, ce qui peut mener à des erreurs
lorsque ces modèles servent à la détermination de points de référence biologiques, tels que F0,1, Fmax ou Fx %. Nous suggé-
rons donc d’utiliser de façon générale une méthode hiérarchique bayésienne pour la modélisation de la croissance et dans
les modèles par recrutement qui incluent la croissance lorsqu’on prend des décisions préventives de gestion.

[Traduit par la Rédaction]

Introduction
The growth of marine fishes and mollusks is highly varia-

ble. Temperature, food availability, and population density
are considered to be dominant factors in large growth rate
differences among different populations of the same species
(Krohn et al. 1997; Swain et al. 2003). Differences also exist
in length at age within and among year classes of a popula-
tion, with differences in invertebrates being very large
(Pearse and Cameron 1991). Large variations in growth
among year classes are often hypothesized to result from

variability in ocean conditions such as water temperature
(Hutchings and Myers 1994) and food availability (Krohn et
al. 1997). Other factors that can cause variation in growth
include size-selective mortality (Myers 1989; Hanson and
Chouinard 1992), energy allocation (Chen and Mello 1999),
population stress as a result of overexploitation (Beacham
1983; Trippel 1995), population structure (Lilly 1996), and
genetics.

Red abalone (Haliotis rufescens) is the largest abalone
and the basis for an important recreational fishery in Cali-
fornia. Haaker et al. (1998) developed and supported the hy-
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pothesis that growth of red abalone varies significantly in
different years, associated with temperature changes during
El Niño ocean climate oscillations. Although Haaker et al.
(1998) detected temporal variation in individual growth, no
model has been developed to date to effectively incorporate
this type of variation. The traditional von Bertalanffy model,
which assumes constant parameters in the model, cannot ac-
commodate temporal changes in growth even when multi-
year data are included in the analysis (Clark 2003).

In this research, a multilevel prior in a hierarchical ap-
proach is used to address the problem of describing growth
rates and their associated uncertainty when multiyear data
are included and indicate substantial variability in growth
over time. Models with multilevel priors are called hierarch-
ical models (Gelman et al. 2004). Multilevel priors have
been used to represent inter- or intra-species differences
when data are hierarchical (Clark 2003; Gelman et al.
2004). Hierarchical models accommodate temporal differen-
ces but assume that these differences derive from an under-
lying distribution (Gelman et al. 2004).

In this study, a hierarchical growth model was used to
simulate temporal variation of red abalone growth (Gelman
et al. 2004). The estimated hyperparameters, the parameters
that further specify the priors of the parameters in the
model, capture the temporal and spatial variations and pro-
vide a more comprehensive representation of important var-
iation in growth compared with traditional constant growth
rate models. Ultimately, growth models that address such
variation are likely the most useful for describing a species’
overall population dynamics and providing stock status de-
terminations in formal assessments. Per-recruit models have
been widely used in fisheries stock assessment, including as-
sessment of abalone species (Shepherd et al. 1991; Nash
1992; Shepherd et al. 1995), and to determine biological
reference points (BRP), e.g., F0.1, F%, F% SSB (Caddy and
Mahon 1995; Food and Agricultural Organisation of the
United Nations (FAO) 1995; Quinn and Deriso 1999). Fail-
ure to incorporate or model the temporal variations of
growth may result in biased BRP estimation associated with
per-recruit methods.

To evaluate the potential benefits of a hierarchical model-
ing approach, the goodness of fit of three hierarchical mod-
els was compared with that of a nonhierarchical model. In
the hierarchical models, the data sets were restructured such
that (i) hierarchical growth differed each year (model M1),
(ii) hierarchical growth differed every two years (model
M2), and (iii) hierarchical growth was the same over all
years (model M3). We also compared the above hierarchical
models with the nonhierarchical models that fit to the data
of all the years cumulated (model M4) and to the data of
each time period (model M5). Deviance information crite-
rion (DIC; Spiegelhalter et al. 2002) was used to compare
model goodness of fit as it incorporates both model fit and
model complexity. The hierarchically structured models
were implemented in a Bayesian framework and analyzed
using Markov chain Monte Carlo (MCMC) simulation.
Bayesian methods have been shown to be effective ap-
proaches in solving hierarchical models (Gelman et al.
2004).

Materials and methods

Tag-recapture data from red abalone at Johnsons Lee
(33854’N, 120806’W) on the south side of Santa Rosa Island,
California, USA, were collected from 1978 to 1984 by Cal-
ifornia Department of Fish and Game personnel and used to
measure growth (Haaker et al. 1998). SCUBA divers col-
lected red abalone and brought them to the vessel, where
they were placed in flowing-seawater tanks. Abalone were
marked with numbered stainless steel tags secured with
stainless steel wire through two open shell apertures (Haaker
et al. 1986). Shell length (maximum shell dimension) was
measured to the nearest millimetre with calipers. Abalone
were marked and visited in 1978, 1979, 1980, 1981, 1982,
and 1984. In each year, both tagged and additional untagged
abalone were collected and measured and retagged if appro-
priate. Recapture information is as follows: from 1978 to
1979, 158 red abalones were recaptured; from 1979 to
1980, 86 were recaptured; from 1980 to 1981, 210 were re-
captured; from 1981 to 1982, 361 were recaptured; and from
1982 to 1984, 59 were recaptured (Fig. 1). Individuals re-
captured more than once were very limited. There were five
individuals recaptured four times (0.2%), 24 individuals re-
captured three times (1.1%), and 177 individuals recaptured
twice (8.3%).

We determined growth curves from annual increments in
length of tagged individuals. We used the nonlinear method-
ology for mark–recapture data to estimate the parameters
and standard errors for the von Bertalanffy growth model
(Fabens 1965; Kirkwood and Somers 1984; Quinn and De-
riso 1999). The von Bertalanffy growth model can be writ-
ten as

ð1Þ Lt ¼ L1ð1� e�KtÞ; or

dL ¼ LtþDt � Lt ¼ ðL1 � LtÞð1� e�KDtÞ

where L? and K are parameters in the von Bertalanffy
growth model, L? represents the asymptotic length of red
abalone, K is the Brody growth coefficient (Ricker 1975), t0
is assumed to be 0 as used in Haaker et al. (1998), Lt is the
length at time t, and Lt+Dt is the length at time t + Dt. A
hierarchical growth model (Gelman et al. 2004) developed
in this study can be written as

ð2Þ dLs ¼ Ls;tþDt � Ls;t ¼ ðLs;1 � Ls;tÞð1� e�KsDtÞ
Ls;1 � NðL1; s2

L1
Þ

Ks � NðK; s2
KÞ

where the subscript s represents temporal-specific para-
meters. The hierarchical population structure is implemented
in this model through a multilevel prior of temporal-specific
parameters in the growth model. dLs were assumed to follow
normal distributions with mean ðLs;1 � Ls;tÞð1� e�KsDtÞ and
variance s2

dLs
.

The Bayesian approach uses a probability rule (Bayes’
theorem) to calculate a ‘‘posterior distribution’’ from the ob-
served data and a ‘‘prior distribution’’, which summarizes
the prior knowledge of the parameters (Berger 1985;
McAllister and Kirkwood 1998; Gelman et al. 2004). This
approach was used to estimate the uncertainty in parameter
estimates. A nonhierarchical Bayesian model describes a
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posterior density for parameters (p(q|dLs)) using Bayes’ the-
orem as

ð3Þ pðq ¼ L1;KjdLsÞ ¼

Y
s

f ðdLsjqÞpðqÞZ þ1
�1

Y
s

f ðdLsjqÞpðqÞ dq

whereas a hierarchical Bayesian method assigns priors of
hyperparameters to yield the joint posterior:

ð4Þ pðq0 ¼ Ls;1;Ks;L1;K; sL1 ; sK jdLÞ

¼

Y
s

f ðdLsjLs;1; KsÞp1ðL1;sjL1; sL1Þ u1ðL1Þ v1ðsL1Þp2ðKsjK; sKÞ u2ðKÞ v2ðsKÞZ þ1
�1

Y
s

f ðdLsjLs;1; KsÞp1ðL1;sjL1; sL1Þ u1ðL1Þ v1ðsL1Þp2ðKsjK; sKÞ u2ðKÞ v2ðsKÞ dq0

In the above equations, f(dLs|q) is the probability density
function of dLs on parameter vector q; u1ðL1Þ and v1ðsL1Þ
are the probability density functions of L1 and sL1 , respec-
tively; and u2ðKÞ and v2ðsKÞ are the probability density
functions of K and sK , respectively.

Bayesian implementation of these models requires specifi-
cation of prior distributions on all unobserved quantities.
Noninformative priors (here, wide uniform distributions)
were used for variances s2

L1
, s2

K and s2
dLs

. Uniform prior
distributions work better as noninformative priors than in-
verse-gamma distributions for variance parameters when
dealing with hierarchical models (Gelman 2006).

A critical issue in using Markov chain Monte Carlo
(MCMC) methods is how to determine when random draws
have converged to the posterior distribution. Here, three
methods were considered: monitoring the trace for key pa-
rameters, diagnosing the autocorrelation plot for key param-

eters, and using the Gelman and Rubin statistic (Gelman and
Rubin 1992; Cowles and Carlin 1996; Spiegelhalter et al.
2004). A detailed description of the use of these methods in
fisheries can be found in Su et al. (2001). In this study, three
Markov chains generated using WinBugs were used (Spie-
gelhalter et al. 2004). The three chains converged after
50 000 iterations with a thinning interval of 5 based on the
convergence criteria and were discarded. A thinning interval
of 5 was then used to avoid parameter autocorrelation. An-
other 20 000 iterations were used to generate the posterior
distributions. The posterior distributions of the key parame-
ters were obtained through a kernel smoothing approach
(Bowman and Azzalini 1997).

To compare the performance of the hierarchically structured
model with the commonly used nonhierarchical von Berta-
lanffy growth model, another three hierarchical models were
developed (Table 1). In the first hierarchical model (M1),

Fig. 1. Observed red abalone (Haliotis rufescens) length at time t versus the length at time t + Dt. Lines are the Lt * Lt points; solid circles
are the Lt * Lt+Dt points. (a) 1978–1979; (b) 1979–1980; (c) 1980–1981; (d) 1981–1982; (e) 1982–1984.
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each year’s data, except 1983 because no tagging occurred that
year, were assumed to be hierarchically structured as

ð5Þ LtþDt � Lt ¼ ðL1 � LtÞð1� e�KDtÞ
L1;1 � NðL1; s2

L1
Þj1982�1984Ið150; 400Þ

..

.

L5;1 � NðL1; s2
L1
Þj1982�1984Ið150; 400Þ

L1 � Uð180; 250Þ
s2

L1
� Uð1; 1000Þ

K1 � NðK; s2
KÞj1978�1979Ið0:15; 0:40Þ

..

.

K5 � NðK; s2
KÞj1982�1984Ið0:15; 0:40Þ

K � Uð0:15; 0:35Þ
s2

K � Uð0:0001; 0:1Þ

Here I represents the boundary of the distribution in Win-
BUGS, i.e., I(150, 400) means that the boundary of the ran-
dom variable L? is between 150 and 400.

In the second hierarchical model (M2), the data for every
two-year period are assumed to be hierarchically structured as

ð6Þ LtþDt � Lt ¼ ðL1 � LtÞð1� e�KDtÞ
L1;1 � NðL1; s2

L1
Þj1978�1980Ið150; 400Þ

L2;1 � NðL1; s2
L1
Þj1980�1982Ið150; 400Þ

L3;1 � NðL1; s2
L1
Þj1982�1984Ið150; 400Þ

L1 � Uð180; 250ÞIð150; 400Þ
s2

L1
� Uð1; 1000Þ

K1 � NðK; s2
KÞj1978�1980Ið0:15; 0:40Þ

K2 � NðK; s2
KÞj1980�1982Ið0:15; 0:40Þ

K3 � NðK; s2
KÞj1982�1984Ið0:15; 0:40Þ

K � Uð0:15; 0:35Þ
s2

K � Uð0:0001; 0:1Þ

In the third hierarchical model (M3), the model is hier-
archically structured but the data were not assumed to be hi-
erarchical:

ð7Þ LtþDt � Lt ¼ ðL1 � LtÞð1� e�KDtÞ
L1 � NðL1; s2

L1
Þj1978�1984Ið150; 400Þ

L1 � Uð180; 250Þ
s2

L1
� Uð1; 1000Þ

K � NðK; s2
KÞj1978�1984Ið0:15; 0:40Þ

K � Uð0:15; 0:35Þ
s2

K � Uð0:0001; 0:1Þ

L1, the hyperparameter of the mean of L?, was assumed to

Table 1. Model comparison among hierarchical and nonhierarchical growth models of red abalone (Haliotis rufes-
cens). Priors of the hierarchical models are L1 * U(180, 250) I(150, 400), K * U(0.15, 0.35). Priors for the nonhier-
archical model are L? ~ U(150, 400), K * U(0.15, 0.40).

Parameter estimates

Model DIC L? (mean, median, SD, 95% CI) K (mean, median, SD, 95% CI)
M1 5938.7 L1 (200.3, 199.9, 9.3, 183.4, 220.5) K (0.239, 0.237, 0.039, 0.165, 0.323)

s2
L1

(484, 452, 237, 123, 957) s2
K (0.013, 0.007, 0.015, 0.001, 0.059)

L1,? (223.0, 222.8, 5.5, 213.0, 234.7) K1 (0.285, 0.284, 0.022, 0.244, 0.329)
L2,? (205.6, 205.1, 6.6, 194.3, 220.2) K2 (0.217, 0.216, 0.031, 0.161, 0.281)
L3,? (196.8, 196.6, 4.4, 189.0, 206.2) K3 (0.212, 0.212, 0.018, 0.176, 0.249)
L4,? (194.8, 194.7, 2.6, 189.9, 200.3) K4 (0.293, 0.293, 0.017, 0.260, 0.326)
L5,? (177.3, 177.3, 3.5, 170.6, 184.4) K5 (0.172, 0.167, 0.019, 0.151, 0.221)

M2 6018.4 L1 (197.8, 196.6, 10.5, 181.5, 221.7) K (0.246, 0.245, 0.049, 0.158, 0.339)
s2
L1

(495, 468, 253, 104, 968) s2
K (0.026, 0.017, 0.024, 0.002, 0.089)

L1,? (211.6, 211.4, 3.6, 205.1, 219.0) K1 (0.297, 0.296, 0.018, 0.261, 0.333)
L2,? (195.4, 195.4, 2.2, 191.3, 200.0) K2 (0.262, 0.262, 0.012, 0.238, 0.286)
L3,? (177.4, 177.3, 3.4, 170.8, 184.2) K3 (0.170, 0.165, 0.017, 0.151, 0.214)

M3 6262.1 L1 (202.0, 199.0, 15.0, 181.3, 238.2) K (0.255, 0.258, 0.055, 0.156, 0.344)
s2
L1

(462, 442, 292, 20, 972) s2
K (0.039, 0.034, 0.029, 0.001, 0.096)

L? (194.1, 194.1, 1.5, 191.2, 197.2) K (0.282, 0.281, 0.010, 0.262, 0.301)
M4 10614.6 L? (191.7, 191.7, 1.1, 189.6, 194.0) K (0.278, 0.277, 0.008, 0.262, 0.292)
M5 1117.9 L1,? (224.2, 223.7, 6.9, 212.1, 239.4) K1 (0.282, 0.282, 0.026, 0.232, 0.335)

597.4 L2,? (207.2, 206.7, 7.0, 193.7, 223.7) K2 (0.212, 0.208, 0.035, 0.156, 0.288)
1421.1 L3,? (196.9, 196.6, 4.5, 188.8, 206.5) K3 (0.211, 0.211, 0.019, 0.175, 0.249)
2430.7 L4,? (194.3, 194.2, 2.5, 189.6, 199.5) K4 (0.296, 0.296, 0.016, 0.265, 0.329)

368.7 L5,? (177.2, 177.2, 2.8, 171.8, 182.8) K5 (0.163, 0.160, 0.012, 0.150, 0.195)
Total = 5935.8 .

Note: All negative growth data are included. Deviance information criterion (DIC) and posterior mean, median, standard deviation
(SD), and 95% credible interval (95% CI) of the parameter estimates are provided.
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follow a uniform distribution between 180 mm and 250 mm.
This range was based on L? estimates from other studies on
red abalone populations (Haaker et al. 1998; Rogers-Bennett
et al. 2007). The hyperparameter of the variance of L?, s2

L1
,

was modeled as noninformative, with a wide uniform distri-
bution between 1 and 1000. The hyperparameter of K was
assumed to follow a uniform distribution between 0.15 and
0.35 based on K estimates from other studies (Haaker et al.
1998; Rogers-Bennett et al. 2007). The hyperparameter of
the variance of K, s2

K , was modeled as noninformative, with
a wide uniform distribution between 0.0001 and 1.

The nonhierarchical von Bertalanffy growth model is

ð8Þ LtþDt � Lt ¼ ðL1 � LtÞð1� e�KDtÞ
L1 � Uð150; 400Þ
K � Uð0:15; 0:40Þ

The priors of L? and K in this model are wider than the
priors of their mean values in the hierarchical models. The
range of L? is as wide as the range of Lt in the hierarchical
models to prevent the influence of the informative priors.
We also added the model that assigns an estimate of para-
meters to each data period (M5). Sensitivities of the results
to prior assumption of both parameters and hyperparameters
were analyzed by changing the lower limits of L1 and K to
50% of the ones used above and by changing the high limit
to 150% of the ones used above. Changes to both the poster-
ior mean and variance were compared. We also analyzed the
growth based on the data set with the negative growth re-
cords not incorporated.

The goodness of fit of the Bayesian hierarchical models
was compared with the classical nonhierarchical model
based on the estimates of the DIC (Spiegelhalter et al.
2002). DIC can be written as

ð9Þ DIC ¼ 2D� bD or Dþ pD

Dðy; qÞ ¼ �2 log-likelihoodðyjqÞ
pD ¼ D� bD

where D is deviance, a measurement of prediction of good-
ness for our models, pD is the effective number of para-
meters in a Bayesian model, D is the posterior mean of the
deviance, and bD is the deviance of the posterior mean. The
DIC is a hierarchical modeling generalization of the AIC
(Akaike information criterion) and BIC (Bayesian informa-
tion criterion, also known as the Schwarz criterion). It is
particularly useful in Bayesian model selection problems in
which the posterior distributions of the models have been
obtained by MCMC simulation. Like AIC and BIC, it is an
asymptotic approximation as the sample size becomes large.
It is only valid when the posterior distribution is approxi-
mately multivariate normal (Spiegelhalter et al. 2002, 2004).

Results
The Gelman and Rubin statistics for all of the parameters,

including all variance terms, equaled 1, which indicated con-
vergence of the Markov chains. Further, the autocorrelation
function plot indicated that a thinning interval of 5 was large
enough to address potential autocorrelation in the MCMC
runs (Fig. 2).

Among the 5 models, M5, the model that assigns the esti-
mate of parameters to each data period, had the lowest DIC
value (Table 1), with model M1 associated with generally
similar DIC values. Among the three hierarchical models
tested, M1, the model with data from each year treated as
hierarchical, performed the best, resulting in the lowest
DIC. Models M2 and M3, the other two models with multi-
level priors of the von Bertalanffy growth parameters, also
resulted in lower DIC values than the nonhierarchical model
(M4). The large differences in DIC values among models
used to describe population growth indicate that temporal
changes in growth of red abalone can be significant and ul-
timately should be considered in population assessments of
this species.

Using a hierarchically structured model generally resulted
in parameter estimates of L? and K with wider credible in-
tervals than using a nonhierarchical model (Table 1). The
credible intervals and standard deviations of L? and K were
considerably larger for the hierarchical von Bertalanffy
models M1, M2, and M3 than the nonhierarchical model
M4, which is illustrated in Table 1.

The hierarchically structured models not only describe the
growth of all the individuals tagged, but also simulate the
growth differences among sampling years. The hierarchical
models M1 and M2 clearly indicated temporal differences
in red abalone growth (Table 1). Results from the model
with the best fit, M1, showed that the joint posterior distri-
butions of L? and K differed substantially between 1978–
1979 (i.e., the highest growth period), 1982–1984 (i.e., the
lowest growth period), and the three intermediate periods
(Table 1; Fig. 3). Parameter L? exhibited a decreasing trend
over time (1978 to 1984). Parameter K varied also, with K1
(0.285) and K4 (0.293) resulting in relatively high estimates,
K2 (0.217) and K3 (0.212) at an intermediate level, and K5
(0.172) at the lowest value. The overall posterior von Berta-
lanffy growth curve showed that abalone grew faster and
larger in 1978–1979, but more slowly in 1982–1984. Results
from M2, when every two years of data were combined, also
indicated that red abalone growth differed markedly between
1978–1980, 1982–1984, and the 1980–1982 intermediate pe-
riods (Table 1).

Residuals, estimated as the differences of the posterior
mean of the length increase with the observed length in-
crease, were plotted against the fitted growth increase (dLs)
when hierarchical model M1 was used. No obvious patterns
were observed in the residual plot of model M1, with the
exception of uneven sample sizes among groups of dLs
(Fig. 4). Also, residual diagnostics for model M5 revealed
no visible patterns of statistical violation.

The posteriors of the hyperparameters and key parameters
for most of the years in all of the hierarchical models were
stable when the priors of L1 widened from
U(180, 250)I(150, 400) to U(90, 375)I(50, 400) and when K
widened from U(0.15, 0.35) to U(0.075, 0.525) (Tables 1
and 2; Fig. 5). The posteriors of the key parameters of the
nonhierarchical models were also stable when L? widened
from U (150, 400) to U(50, 400), and K widened from
U(0.15, 0.40) to U(0.075, 0.575) (Tables 1 and 2). The pa-
rameters of the period of 1982–1984 were less stable and
were influenced by the boundary of K (Table 2; Fig. 3).

The percentages of negative growth data were 2%, 17%,
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18%, 12%, and 23% during the 5-year tagging periods. In all
of the models, omission of the negative data resulted in
changes to the estimated growth parameters, depending on
the amount of negative values in the total data set for each
tag–recapture period, e.g., period 1982–1984 had highest per-
centage of negative values and resulted in the largest
differences (Table 3). Finally, inclusion or omission of the
negative growth information in the modeling analyses con-

ducted here indicated that temporal variation in the growth of
red abalone is likely a significant attribute in this species’ bi-
ology off the southern California coast (San Miguel Island).

Discussion

Although the Bayesian hierarchical modeling estimates
are close to estimates of the nonhierarchical model that as-

Fig. 2. Autocorrelation function plots of parameters when M1 is used with prior stated in Table 1 and text: (a) L1; (b) s2
L1

; (c) K; and (d) s2
K .

Fig. 3. Joint posterior distributions of K and L? from 1978 to 1984 based on the hierarchical growth model M1 with prior stated in Table 1:
red, 1978–1979; magenta, 1979–1980; yellow, 1980–1981; green, 1981–1982; blue, 1982–1984.
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signs an estimate of parameters to each data period in this
study, the hyperparameters in the hierarchical model are
often very useful in incorporating the temporal variability
into the stock assessment (Gelman et al. 2004). The good-
ness of fit of the hierarchical models can be worse than that
of the highly parameterized model when the number of data
groups is small. The fits for each data group are not as good
because the hierarchical model assumes that the differences
among the data groups are from the same underlying distri-
bution; at the same time, the number of parameters in the
hierarchical models is not much less than in the highly para-
meterized model because the number of groups is low. In
this study, there were five years of recaptures; the fits using
M1 and M5 were close, with M5 being slightly better. When
the number of years of recaptures increases, say to 10 years
or more, the goodness of fit using hierarchical models will
be much better because of better parsimony. In spite of the
goodness of fit, the hierarchical models always estimate the
parameters of all data groups simultaneously, and the hyper-
parameters can be used in future stock assessment when the
specific temporal change is less predictable.

The hierarchical growth model captured the dramatic tem-
poral variation in growth including years of warm and nor-
mal sea surface temperatures (SST) in southern California.

Slow growth rates from 1982 to 1984 occurred during a ma-
jor El Niño event (Figs. 6 and 7). We found that L? had a
significant negative relationship with average SST anoma-
lies (p = 0.0081; Fig. 7). More work is needed to investigate
the impacts of cold sea surface conditions on the growth of
red abalone. We suggest that this relationship between SST
and red abalone growth could be factored into future man-
agement algorithms and decisions. Currently, few fishery
management plans explicitly incorporate SST (or other
measures of ocean productivity) into fishery models. One
exception is the management of Pacific sardines in which it
is widely hypothesized that ocean warming greatly influen-
ces sardine productivity and abundance and, therefore, SST
is used formally when setting harvest guidelines for this spe-
cies (Conser et al. 2002). For red abalone, we see that few
individuals will grow into the legal size (197 mm for com-
mercial fisheries and 178 mm for recreational fishery) dur-
ing warm-water years. As a result, if fishing effort remains
unchanged and population dynamics models ignore this
growth variation, then exploitation rate, the percent taken,
will be higher in these years than anticipated (Parma 2002).

Warm water also impacts food availability, having a neg-
ative effect on kelp growth (Leighton 1974; Tegner and
Dayton 1987; Tegner et al. 1992). In laboratory experiments,

Fig. 4. Residuals plots when model M1 is used with prior stated in Table 1 and the text: (a) 1978–1979; (b) 1979–1980; (c) 1980–1981;
(d) 1981–1982; and (e) 1982–1984.
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Table 2. Model comparison among hierarchical and nonhierarchical growth models of red abalone (Haliotis rufescens).
Priors of the hierarchical models are L1 * U(90, 375) I(50, 400), K * U(0.075, 0.525). Priors for the nonhierarchical
model are L? ~ U(50, 400), K ~ U(0.075, 0.525).

Parameter estimates

Model DIC L? (mean, median, SD, 95% CI) K (mean, median,SD, 95% CI)
M1 5936.2 L1 (200.8, 200.8, 9.9, 181.3, 220.9) K (0.230, 0.229, 0.058, 0.116, 0.361)

s2
L1

(447, 404, 247, 88, 953) s2
K (0.020, 0.013, 0.019, 0.002, 0.077)

L1,? (222.6, 222.3, 5.6, 212.5, 234.6) K1 (0.286, 0.286, 0.022, 0.243, 0.331)
L2,? (206.5, 205.7, 7.3, 194.4, 223.1) K2 (0.213, 0.212, 0.033, 0.150, 0.279)
L3,? (197.0, 196.7, 4.4, 189.0, 206.4) K3 (0.211, 0.210, 0.019, 0.176, 0.248)
L4,? (194.7, 194.6, 2.6, 189.9, 200.1) K4 (0.294, 0.294, 0.017, 0.261, 0.327)
L5,? (183.6, 182.7, 6.7, 172.7, 198.4) K5 (0.126, 0.122, 0.031, 0.079, 0.194)

M2 6016.7 L1 (196.8, 196.9, 12.7, 170.2, 222.6) K (0.243, 0.234, 0.088, 0.095, 0.449)
s2
L1

(465, 431, 265, 69, 965) s2
K (0.036, 0.029, 0.026, 0.004, 0.094)

L1,? (211.4, 211.2, 3.6, 204.8, 219.0) K1 (0.297, 0.297, 0.019, 0.261, 0.335)
L2,? (195.5, 195.4, 2.2, 191.3, 200.1) K2 (0.261, 0.261, 0.012, 0.238, 0.286)
L3,? (183.7, 183.0, 6.6, 172.9, 198.1) K3 (0.122, 0.119, 0.029, 0.078, 0.188)

M: 6261.7 L1 (194.0, 193.9, 22.6, 147.4, 241.0) K (0.292, 0.289, 0.113, 0.093, 0.504)
s2
L1

(502, 503, 287, 26, 977) s2
K (0.044, 0.041, 0.029, 0.002, 0.097)

L? (194.0, 194.0, 1.5, 191.2, 197.1) K (0.282, 0.282, 0.010, 0.262, 0.302)
M4 10614.5 L1 (191.7, 191.7, 1.1, 189.6, 193.9) K (0.278, 0.278, 0.008, 0.263, 0.293)
M5 1117.9 L1,? (224.1, 223.6, 6.9, 212.0, 239.0) K1 (0.282, 0.282, 0.027, 0.232, 0.335)

597.9 L2,? (209.2, 207.6, 10.4, 194.0, 234.3) K2 (0.204, 0.204, 0.040, 0.126, 0.284)
1421.2 L3,? (196.9, 196.6, 4.5, 188.8, 206.6) K3 (0.211, 0.211, 0.019, 0.175, 0.249)
2430.64 L4,? (194.3, 194.2, 2.5, 189.6, 199.5) K4 (0.297, 0.296, 0.016, 0.265, 0.329)
367.2 L5,? (182.9, 182.3, 5.2, 174.3, 194.5) K5 (0.120, 0.119, 0.023, 0.081, 0.170)

Total = 5934.8 .

Note: All the negative growth data are included. Deviance information criterion (DIC) and posterior mean, median, standard devia-
tion (SD), and 95% credible interval (95% CI) of the parameter estimates are provided.

Fig. 5. Posterior probability density functions of hyperparameters when model M1 is used under three situations corresponding to Tables 1–
3 (S1, S2, and S3): (a) L1; (b) s2

L1
; (c) K; and (d) s2

K . S1, continuous line; S2, dotted line; S3, dotted–dashed line.
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warm water temperatures halted growth, reduced reproduc-
tion, and increased the onset of a lethal abalone disease,
withering syndrome (WS) (Vilchis et al. 2005). To distin-
guish the impacts of warm water from other factors, labora-
tory experiments with abundant kelp in WS disease free
conditions were conducted that resulted in the cessation of
abalone growth (Rogers-Bennett et al. 2010). These labora-
tory-based growth results correspond to results for red ab-
alone in the field, which further supports their incorporation
into the growth modeling work.

Negative growth data were recorded in this study. Rea-
sons for this negative growth can be both measurement error
and real negative growth caused by conditions of poor food
and physiological stress. L. Rogers-Bennett (personal obser-
vation) has seen this negative growth in the lab in warm
water and poor food conditions. Haaker et al. (1998) con-
cluded that there was no significant effect caused by the tag-
ging performance. We suggest considering the negative
growth values in the modeling analysis in this situation. A
possible supplementary approach is to use a measurement
error model, which does not assume that the length measure-
ments are perfect but with measurement errors (Jiao et al.
2006; Cope and Punt 2007).

Potential effects from both sampling selectivity and fish-
ery selectivity can be a problem (Myers 1989; Sinclair et al.
2002). If the fastest-growing individuals reached the legal
size sooner, they would be differentially removed, and
growth estimation would become negatively biased over
time. Conversely, if larger abalone are easier to locate

(size-selective sampling), then the fastest-growing small ab-
alone would have a higher probability of recapture during
subsequent sampling, and growth rates for small (but fast-
growing) individuals could be overestimated. Although the
study site was open to extraction, with commercial mini-
mum catchable size of 197 mm and recreational minimum
catchable size of 178 mm, Haaker et al. (1998) and Tegner
et al. (1989) concluded that there was no obvious effect
caused by the sampling selectivity and fishing selectivity
based on length sampling during this time period on this
population.

Individual-level hierarchical models may be used when
the percentage of multiple recaptures is high, because if a
single abalone contributes to more than one data point in
the analysis, then each point is not strictly independent and
the potential correlation among replicate observations from
each individual needs to be accounted for (Gelman et al.
2004; Zhang et al. 2009). However, in this study, the per-
centage of recaptures, including abalone captured more than
once, in the 6 years of the recapture study was very low, and
therefore, we did not consider this effect. It may be explored
in a future study.

Some other modeling approaches may be considered in
the future based on the characteristics of this red abalone
population. Growth parameters L? and K are strongly corre-
lated, so models with explicit treatments of the known
strong correlations among growth parameters may be used
for red abalone growth in this population (Helser and Lai
2004; He and Bence 2007). A ‘‘random-walk’’ approach

Table 3. Model comparison among hierarchical and nonhierarchical growth models of red abalone (Haliotis rufescens).
Priors of the hierarchical models are L1 * U(180, 250) I(150, 400), K * U(0.15, 0.35). Priors for the nonhierarchical
model are L? ~ U(150, 400), K * U(0.15, 0.40).

Parameter estimates

Model DIC L? (mean, median, SD, 95% CI) K (mean, median, SD, 95% CI)
M1 4935.1 L1 (207.4, 207.2, 9.9, 187.9, 228.0) K (0.231, 0.229, 0.036, 0.164, 0.313)

s2
L1

(486, 453, 239, 118, 958) s2
K (0.010, 0.005, 0.014, 0.001, 0.054)

L1,? (228.4, 228.0, 6.2, 217.3, 241.9) K1 (0.269, 0.269, 0.021, 0.228, 0.312)
L2,? (212.3, 211.6, 7.3, 200.0, 228.4) K2 (0.239, 0.237, 0.034, 0.176, 0.308)
L3,? (208.4, 208.0, 6.2, 197.4, 221.8) K3 (0.201, 0.200, 0.019, 0.164, 0.240)
L4,? (204.7, 204.5, 3.9, 197.8, 212.7) K4 (0.259, 0.259, 0.017, 0.225, 0.293)
L5,? (182.6, 182.6, 4.5, 174.0, 191.6) K5 (0.171, 0.166, 0.019, 0.151, 0.221)

M2 4973.1 L1 (203.8, 203.2, 11.9, 183.0, 229.5) K (0.240, 0.237, 0.048, 0.158, 0.337)
s2
L1

(520, 501, 251, 112, 970) s2
K (0.025, 0.015, 0.024, 0.002, 0.089)

L1,? (218.3, 218.2, 4.4, 210.4, 227.6) K1 (0.285, 0.285, 0.019, 0.249, 0.324)
L2,? (205.8, 205.7, 3.4, 199.7, 212.8) K2 (0.237, 0.237, 0.013, 0.211, 0.264)
L3,? (182.7, 182.7, 4.4, 174.2, 191.5) K3 (0.169, 0.164, 0.018, 0.151, 0.216)

M3 5193.7 L1 (207.4, 205.5, 15.4, 182.5, 241.7) K (0.252, 0.252, 0.055, 0.156, 0.345)
s2
L1

(466, 447, 288, 22, 970) s2
K (0.039, 0.033, 0.029, 0.001, 0.096)

L? (203.4, 203.4, 2.2, 199.2, 208.0) K (0.258, 0.258, 0.011, 0.237, 0.280)
M4 8707.5 L? (200.6, 200.6, 1.7, 197.5, 204.0) K (0.255, 0.255, 0.008, 0.239, 0.272)
M5 1076.2 L1,? (229.4, 228.8, 7.7, 215.9, 246.1) K1 (0.268, 0.267, 0.026, 0.218, 0.320)

458.3 L2,? (212.9, 212.0, 8.4, 199.0, 232.0) K2 (0.238, 0.237, 0.038, 0.168, 0.316)
1099.6 L3,? (209.4, 209.0, 6.4, 197.9, 223.0) K3 (0.197, 0.197, 0.019, 0.161, 0.237)
2047.8 L4,? (204.1, 203.9, 3.9, 197.0, 212.5) K4 (0.262, 0.262, 0.018, 0.227, 0.297)

251.1 L5,? (182.5, 182.5, 3.6, 175.3, 189.7) K5 (0.164, 0.160, 0.013, 0.150, 0.198)
Total = 4932.9 .

Note: All the negative growth data are deleted. Deviance information criterion (DIC) and posterior mean, median, standard deviation
(SD), and 95% credible interval (95% CI) of the parameter estimates are provided.
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(Szalai et al. 2003; Jiao et al. 2009) might be better suited to
time-varying parameters that can describe trends of the pa-
rameters. Also the very strong relationship between L?, K,
and SST anomaly suggests that it might be effectively used
as a direct covariate in the hierarchical analysis. Introducing
categorical or continuous covariates into this type of analy-
sis is relatively straightforward and may be much more par-

simonious than allowing additional parameters for variable
growth over years or arbitrary groupings of years (Helser et
al. 2007). We need to select the type of models to explore
according to the data characteristics and our preliminary
knowledge of the effects of the possible covariates. In situa-
tions when either the data for each time period were not bal-
anced, with some years having small sample size or narrow

Fig. 6. Sea surface temperature anomalies of ENSO (Joint Institute for the Study of the Atmosphere and Ocean 2007). Global ENSO SST
(tropics minus extratropics) (C) 1950 – July 2007. The rectangle indicates the period when the red abalone (Haliotis rufescens) were tagged
at Johnsons Lee.

Fig. 7. Analysis between sea surface temperature (SST) anomalies and growth parameters (posterior means from model M1). Average
anomalies of SST are calculated as the mean SST anomalies over years. For example, for individuals tagged in 1978 and recaptured at
1979, the corresponding average SST anomaly equals the mean SST anomalies of 1978 and 1979. (a) Ls,? * averaged SST anomaly;
(b) Ks * averaged SST anomaly.
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length range, or the relationship between growth parameters
and covariate is possibly nonlinear, which is usually true,
the use of hierarchical models is suggested. The hierarchical
model would allow the years with low sample size or nar-
row length range to borrow strength from other years with
large sample size in the first situation. It would estimate the
time-changing parameters and then look into the relationship
between parameters and the covariates.

In this study, the base growth curve considered is the von
Bertalanffy curve, but other growth curves can perform bet-
ter or are worthwhile to be explored in the future (Katsane-
vakis 2006; Rogers-Bennett et al. 2007; Haddon et al. 2008).
Uncertainty in model selection can be high when different
growth curves are used. Model averaging and Bayesian
model averaging can be alternative approaches to incorpo-
rate this model selection uncertainty (Burnham and Ander-
son 2002; Jiao et al. 2008).

Temporal variation of red abalone growth has been deter-
mined to be an important biological feature of these long-
lived marine invertebrates (Haaker et al. 1998; Hobday and
Tegner 2002). A model that can incorporate these temporal
variations is needed to better capture abalone growth dy-
namics. For long-term management purposes, these varia-
tions need to be included in the stock assessment of
abalone. When yield-per-recruit (YPR) and egg-per-recruit
(EPR) models are used for stock assessment purposes, a hi-
erarchical growth model as developed in this study may be
used instead of nonhierarchical models that are more gener-
ally employed. YPR and EPR models are sensitive to
growth variation and are certainly not safe to be used for ab-
alone stock assessment (Tegner et al. 1989). A nonhierarch-
ical model can underestimate the uncertainty caused by
growth variation over time, which could contribute to over-
fishing during periods of low ocean productivity.

Growth during 1982 to 1984 was reduced to such a level
that most abalone would not grow to the minimum legal size
at that rate. This result is a challenge for stock assessment
modeling and management because growth is widely used
in developing biological reference points from per-recruit-
ment analyses. Lower growth rates in the population than
used in the modeling work could result in high F0.1 and Fx%
estimates from YPR and EPR models given the same mini-
mum catchable size limit because most would be smaller
than the size limit. However, the availability of abalone of
catchable sizes would be low. A comprehensive modeling
system that is capable of recognizing and incorporating im-
portant variability in growth rates and its relation with ocean
climate if possible is needed for abalone and other species
that exhibit highly variable growth rates. Hierarchical
growth modeling may be a component of an ecosystem-
based fishery management approach that can incorporate im-
portant changes in vital rates as they respond to fluctuations
in oceanographic conditions.
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