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ABSTRACT We estimate annual growth and mortality of red abalone, Haliotis rufescens, in northern California using tag

recapture data applied to multiple growth and mortality models. We investigate seven growth models of the form,

Lt+1 ¼ Lt + f ðLtÞ; where Lt is the shell length at tagging (time t), Lt+1, is the shell length one year later, and the function f(Lt) is

a model of the change in length DL. Abalone are drawn from a broad range of sizes (shell lengths 5–222 mm) tagged and

recaptured one year later (n ¼ 231) in the Point Cabrillo Reserve in northern California. We present the results for seven growth

models, rank the fit of the models (using the sum of the squared residuals) selecting the Richards, Gaussian, Ricker, and von

Bertalanffy models (in that order) as most appropriate for these variable growth data. The von Bertalanffy model yields the

shortest time to fishery (recreational legal size is 178 mm) as it slightly overestimates early growth. The Ricker model yields the

longest time to enter the fishery underestimating early growth. We present a table of abalone sizes as a function of time for the

Gaussian model, from which we estimate the number of years to grow into the fishery (12.0 ± 1 y). Because differences among the

applicable models are not great, we use the growth parameters generated by the simple von Bertalanffy model (LN and K) to

estimatemortality. The results are consistent among our fivemortality estimates ranging from 0.11–0.23 per year. Estimates of the

number of years to enter the fishery and mortality estimates, as well as knowledge of how model selection can influence these

estimates, is important for fishery management. Informed fishery management for red abalone is critical because the fishery in

northern California is the last open abalone fishery in the state.

KEYWORDS: red abalone, Richards, logistic, Gaussian, von Bertalanffy, growth parameters, mortality parameters, northern

California, fishery management

INTRODUCTION

Abalone populations have declined around the world,
forcing the closure of many fisheries (Campbell 2000, Karpov

et al. 2000, Shepherd et al. 2001). In California, the commercial
and recreational abalone fishery, which once landed in excess
of 3,000 metric tons in the 1960s, has collapsed (CDFG Code

5521) after the expansion of the sea otter’s range (Vogel 2000)
and the serial depletion of five species within the abalone
complex (Dugan & Davis 1993, Karpov et al. 2000). Estimates
of white abalone populations are so low that this species was

placed on the federal endangered species list in May 2001
(Hobday et al. 2001). The black abalone is now a candidate
species as a result of the combined pressures from fishing and

the disease-withering syndrome (Haaker et al. 1992, Moore
et al. 2002). Several other species in the genus Haliotis are
proposed as species of concern (M. Neuman pers. comm.).

One exception to this pattern of declining abalone stocks in
California has been populations of red abalone north of San
Francisco that support a recreational fishery. An estimated

35,000 fishers caught 264,000 red abalone in 2002 (Kalvass &
Geibel 2007) and landings in this fishery seem to be stable. The
stability of the fishery in the north may be a consequence of
unique management policies that combine traditional fishery

management (size limits and season closures) with a prohibition
of commercial fishing and the use of SCUBA. This contrasts
sharply with southern California, where these additional

restrictions were not in place and where history has shown
abalone populations succumbed to multiple factors including

overfishing, sea otters, and disease. Population declines in the

south highlight the need for precautionary management of the
last abalone fishery in northern California.

Growth models and mortality estimates are needed to
understand the population biology of abalone in California.

Despite the need for growth information, modeling efforts have
been hampered by (1) problems with model selection (Ebert &
Russell 1993, Hernandez-Llamas & Ratkowsky 2004); (2) lack

of data from a wide range of abalone sizes; and (3) lack of data
from northern California where the recreational fishery is
based. The von Bertalanffy function, which is commonly used

to model abalone growth (Day & Fleming 1992), has been
shown to overestimate juvenile growth for invertebrates
(Yamaguchi 1975, Rogers-Bennett et al. 2003) including aba-

lone, so other models such as the Gompertz model have been
used (Day & Fleming 1992, Nash 1992, Matsuishi et al. 1995,
Troynikov & Gorfine 1998). Several growth models should be
examined to determine which fit growth data from red abalone

in northern California best. Once parameter estimates have
beenmade, they can be used to predict the time required to grow
to legal size and instantaneous natural mortality rates. Previous

growth estimates for red abalone in southern California have
ranged widely from 5.6–11.3 y to reach minimum legal size
(Tegner et al. 1989, Haaker et al. 1998) frustrating attempts to

manage stocks in the north. Knowledge of the number of years
required for wild abalone to grow into the fishery is essential for
establishing sustainable take limits. Growth and mortality rates

are also required to construct population models such as matrix
models (Ebert 1999, Caswell 2001, Rogers-Bennett&Leaf 2006).

In this study, we estimate growth and mortality rates for red
abalone, (Haliotis rufescens), in northern California. We use

data from a tag-recapture study of red abalone growing for one*Corresponding author: e-mail: rogersbennett@ucdavis.edu
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year in northern California and input these data into seven
growth models. We augment the size range of the tagging study

using growth data from juvenile red abalone stocked into
the tagging sites. We generate growth curves and estimate
the number of years to reach minimum legal size in northern
California. The models are ranked according to goodness of fit

to the data, and appropriateness of each of the models for the
data set is discussed. Selected models are tested for their
sensitivity to changes (10%) in the parameter values. Mortality

estimates are determined using the von Bertalanffy parameters
and five methods of determining mortality estimates. The
implications of these growth and mortality estimates as well

as the choice of model are discussed in relation to their
population biology and susceptibility to over-exploitation.

MATERIALS AND METHODS

Abalone Growth Data

A red abalone tag-recapture study was conducted in north-
ern California (Shultz & DeMartini unpubl data). As part of
this large growth study, changes in abalone length were deter-

mined after one year of growth in the Point Cabrillo Reserve
at the Mendocino Headlands (39�21#49$N, 123�49#47$W),
California, USA. All fishing including recreational abalone

fishing has been prohibited in the Point Cabrillo Reserve since
1975, and before this there may have been light fishing pressure
in the northern portion of the reserve only. The subtidal area is a
high energy exposed headland, dominated by high relief, rocky

reefs with crevices and seasonally dense beds of kelp, excessive
drift, Nereocystis, and annual laminarians.

Red abalone were tagged and recaptured over a five year

period starting in summer 1971. The growth data presented here
examined growth over one year. Shell lengthwasmeasured at the
time of tagging and then again 12 mo later when the tagged

abalone were recaptured. Divers collected red abalone and
brought them to the boat for tagging. Abalone were tagged
using numbered stainless disc tags attached with stainless wires
inserted into the first two open respiratory pores and then twisted

tight. Of all the tagged abalone that were recaptured over this
time period (>5,000) we used 208 in this study, because these were
recaptured at or close to one year. We used only data from

abalone that were recaptured one year after tagging at the north
and south Point Cabrillo Cove site and most of these abalone
were >100 mm in length. Fewer intermediate size abalone <100
mm were tagged in this study as smaller size classes were less
common. A total of 38 abalone 50–100 mm in length were
included in the data set and these abalone were recaptured 8–16

mo after tagging. For these intermediate size abalone, growth
was determined per month then adjusted to estimate growth for
one year. Months were assumed to equal 30 days.

To supplement growth information for juvenile abalone

(<50 mm) we included growth of juveniles from a stocking
study. Juvenile abalone and other invertebrates occupy deep
crevices under large rocks, avoid light, feed on microalgae and

are difficult to find. Little growth information for these small
size classes exists. Stocking of large numbers (n ¼ 10,000) of
hatchery produced juvenile red abalone made it possible to

follow juvenile red abalone growth at the Mendocino head-
lands over one year in the field. The shells of the juveniles were
turquoise or pale green from the hatchery diet distinguishing

them from wild stock. Stocking took place in October 1995 at
the Mendocino headlands just north of the Point Cabrillo

Reserve (near Caspar Cove), and the abalone were recaptured
one year later. Growth data was obtained from red abalone
ranging in size at the time of stocking from 5–30 mm (Rogers-
Bennett & Pearse 1998). Of more than 10,000 juveniles

stocked, positive identification of recaptured hatchery reared
juveniles was made for 23 abalone from this site. The pale
blue/green coloration allowed for the measurement of shell

length at the time of stocking and then the final shell length
(red shell) was measured at the time of recapture.

Growth Models

We investigated seven models, the Richards, logistic dose-
response, Gaussian, Tanaka, Gompertz, Ricker, and von
Bertalanffy models of red abalone growth. Each model yields

a different f(Lt), which approximates DL, the annual change in
shell length of a representative member of the population. Here
f (Lt) is a function fitted to a data set consisting of measured
individual annual growth DL ¼ Lt+1 – Lt versus size at tagging,

Lt. Eqs. 8–15 later were input as user defined functions into a
curve-fitting program. In certain cases, additive parameters in
the model equations making a negligible contribution to the

final fit were dropped. This curve-fitting program uses the
Levenburg-Marquardt procedure for finding the minimum of
the squared sum of deviations. During the least-squares mini-

mization, local minima were occasionally found and were
discarded in favor of the global minima. Matrix inversion was
done using the Gauss-Jordan method (Carnahan et al. 1969).

We ranked the models according to the fitting criterion
of the sum of squared residuals (SSR), called ‘‘Error Sum
of Squares’’ in the output from the Table Curve fitting pro-
gram. Rankings from other fitting criteria were also calcu-

lated including both the AIC information criterion,
AIC ¼ k lnðRSSÞ � k ln k + 2m and the Schwartz-Bayesian cri-
terion SBC¼k ln ðRSSÞ � ðk�mÞ ln ðkÞwhere k is the number of

data points and m is the number of parameters in the fitting
equation (Akaike 1979). These tests of curve fitting quality were
used to bring out substantive differences between the 2-param-

eter and 3-parameter equations. The results show that differ-
ences between the 2- and 3-parameter cases are swamped out by
the data set, as might be anticipated from the disparity between

the number of data points (k ¼ 231) and the number of
parameters. For the present data set, in applying either of these
criteria, one is essentially seeking the smallest SSR.

Growth as a Function of Time

Having DL ¼ f(Lt) from Figure 1, one can assume a small
(essentially zero) initial size at settlement and determine the size
1, 2, 3, . y after settlement using a simple loop in BASIC or by

any similar recursive calculation. Growth curves L¼ f(t) shown
in Figure 2 yield an estimated time to fishery unique to each
model. The Richards, Gompertz, and von Bertalanffy functions

are members of the same mathematical family and are shown as
the Richards group in Figure 2.

Mortality Estimates

Mortality estimates can be made without knowledge of age
if K is known. Mortality estimates using tag recapture data
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alone have been shown to agree closely with estimates generated

when ages are known (Ssentongo & Larkin 1973). Mortality
has been estimated for abalone, H. iris, using von Bertalanffy
parameters by a number of different methods (Sainsbury
1982). The instantaneous total mortality rate Z is equal to the

instantaneous total mortality rate M when no fishing is allowed
such as inside the Point Cabrillo Reserve where these data were
collected. Total mortality Z is estimated as follows:

Method 1: Beverton Holt (1956)

Z ¼ KðL‘ � lÞ
l� lc

(1)

where LN ¼ asymptotic abalone length, l ¼ the mean length
of abalone in the sample and lc ¼ length of smallest abalone in

the sample. The derivation assumes that mortality and recruit-
ment are constant, the population has a stable age distribution,
and individual growth is described by the von Bertalanffymodel.

Method 2: Ssentongo & Larkin (1973)

Z ¼ n

n + 1

K

logeð1� lc=L‘Þ � logeð1� l=L‘Þ
(2)

where n ¼ sample size.

Method 3. Alverson & Carney (1975)

Z ¼ M ¼ 3K

eKTmb � 1
(3)

where Tmb ¼ critical age
Method 4. Pauly’s empirical mortality equation (Pauly 1984).

LogðMÞ ¼ � 0:0066� 0:279 log ðL‘Þ + 0:6543 log ðKÞ
+ 0:4634 log ðTÞ (4)

Method 5. Jolly Seber
A Jolly-Seber tag and recapture model was used to estimate

the instantaneous rate of total mortality (Jolly 1965, Seber 1965)
of red abalone from surveys of the North Point Cabrillo Cove

Reserve population. Model assumptions include equal proba-
bility of dying for all individuals, equal catchability and closed
population.Red abalonewere sampled after one year (±60 days).
The Jolly-Seber model was used in theMARKprogram inwhich
the parameters were held constant (White & Burnham 1999).

RESULTS

We present growth data for 170 adult, 38 juvenile (50–100
mm) and 23 young of the year (5–30 mm) red abalone growing

Figure 1. Growth (change in length) as a function of shell length for red abalone growing for one year in northern California. Growth of juvenile abalone

<50 mm are from juveniles stocked in the wild for one year. Six growth models are fitted to the same data using the Richards, Logistic dose-response,

Gaussian, Tanaka, Ricker, and von Bertalanffy models.
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near the Mendocino headlands, in northern California for one
year. Recaptured red abalone ranged in size from 5–222 mm at
the time of tagging. Growth was greatest for red abalone in the

50–100 mm size class and least for the largest abalone although
there was individual variation. Outliers and cases in which final
measurements (after 12 mo) were less than initial measurements

(negative growth) were not discarded. It is interesting to note
that the six largest abalone had either negative or zero growth
after one year, which may have been caused by measurement

error or shell infestations.
Using the Jolly Seber methods we estimate the probability of

recapture to be P ¼ 0.334 (SE ¼ 0.018).

Length-weight Relationship

The relationship between the length (L) and the weight (W)
of an organism can be expressed

W ¼ a 3 Lb (5)

For red abalone, as for many other species, b ¼ 3 or is
not significantly different from 3 and a ¼ is very small. We
used a large sample (n ¼ 576) of red abalone from the

recreational fishery at Van Damme State Park (near the
reserve tag site) in 2000–2002 to determine the relationship
between length and weight. We find that W ¼ 0:0001 3 L3:03.

Because growth is isometric (b ¼ 3), we can also determine
that the condition factor (c.f.) is related to a as c.f. / 100 ¼ a
so c.f. ¼ 0.01.

Estimating Asymptotic Size

Estimates ofLN, have beenmade by simply taking the largest
length recorded from a given stock. The record is L max¼ 313.18

mm for a red abalone taken by J. Pepper in Humboldt County,
northern California. Taylor (1958) suggests that Lmax

0:95 @ L‘,
therefore, LN would be larger than the largest abalone taken.

For red abalone this would be LN ¼ 329.66 mm.
Growth conditions experienced by the record abalone,

however may not be typical for the entire north coast. There-

fore, it may be more appropriate to average several large
abalone from multiple stocks or populations rather than use
the record individual for the species as a whole. The 14 largest

red abalone recorded from the recreational fishery average
287.8 mm (Macias 1999).

Mean
Lmax

0:95
@ L‘ (6)

Using the mean of the 14 largest red abalone for Lmax,
LN¼ 303 mm.

Growth Models

Wemodeled red abalone growth using seven growthmodels,
the Richards, logistic dose-response, Gaussian, Tanaka, Gom-
pertz, Ricker, and von Bertalanffy models (Table 1), and we

rank them in order of quality of fit (Fig. 1 and Table 2)
according to the sum of squared residuals (SSR). In each of
the following equations, f(Lt) is a model of growth as a function

of Lt fitted to measured annual growth of abalone tagged at

Figure 2. Length as a function of time in years according to selected growthmodels. The Richardsmodel includes theGompertz (rightmost curve) and the

von Bertalanffy (leftmost curve) models as special cases. Horizontal lines indicate the minimum legal size (178mm) of red abalone in northern California.
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length Lt. If Lt were known at some time t, adding f(Lt) to it

would yield the length at time t + 1 y. In tag-recapture studies,
however, the age is not known. Curves in Figure 2 were
generated by assuming the size of the animal to be near zero

at t ¼ 0, building the growth curve year by year by adding
sequential annual increments f(Lt).

There is more growth information for large abalone and so
the statistical parameters are dominated by the larger abalone

(see especially the Tanaka model). There is a good deal of scatter,
which leads to rather poor statistical fitting parameters. Growth
curves in Figure 1, especially the one corresponding to the

Gaussianmodel, are, in our opinion, the best that can be extracted
from the data set. There is redundancy among the Richards,
Gompertz, and von Bertalanffy models, which are shown to be

mathematically equivalent in the discussion relating to Figure 2.

Richards

As Ebert (1999) points out, the Richards function (time-to-

fishery estimate ¼ 13.0 y) incorporates the von Bertalanffy
(time-to-fishery ¼ 11.2 y)

Lt ¼ L‘ð1� e�ktÞ (7)

andGompertz (time-to-fishery¼ 15.5 y where n is large) models

f ðLtÞ ¼ L�1=n
‘ ð1� e�KÞ + L

�1=n
t e�K

h i�n

(8)

according to the value of a ‘‘shape parameter’’ n allowing for an
inflection in the curve of L versus. t (Richards 1959, Ebert 1980,
1999).

L ¼ L‘ð1� be�KtÞ�n (9)

When n¼ –1 this equation is the von Bertalanffy model, and
when n is very large and negative, the expression forL converges
on the Gompertz model. Strictly, the term Gompertz should be

used when n ¼ ‘ leading to

LðtÞ ¼ e�egðt�tiÞ

where ti is the time at which the inflection point is reached. Ebert
(1999) refers to the ‘‘Richards family of growth curves,’’ which
include von Bertalanffy, logistic, and Gompertz curves as
special cases.

Minimization of the fitting parameters in Eq. 8 leads to LN¼
201 mm, K ¼ 0.254 y–1, and n ¼ –2.76 (unitless) with SSR ¼
13,444. In general, there is another parameter, b, to be determined

b ¼ ðL‘ � LsettleÞ
L‘

(10)

where Lsettle is the shell length at settlement. In the present case,

Lsettle is very small relative to LN, therefore b is essentially 1.
Minimization is difficult because of the singularity at n ¼

0 and the existence of multiple minima. Minimization of the

Richards function from small negative values of n (which is not
a linear parameter) and reasonable guesses as to LN and K,
leads to a curve with diminishing slope as Lt increases (Fig. 1).

TABLE 2.

Fitting criteria for seven functions used to model red abalone
growing in northern California.

R2 SSR AIC BIC # Parameters

Richards 0.408 13444 933 955 3

Logistic 0.407 13460 933 955 3

Gaussian 0.391 13836 939 961 3

Gompertz 0.377 14137 944 967 3 (or 4)

Tanaka 0.370 14305 947 969 3

Ricker 0.330 15215 961 984 2

von Bertalanffy 0.273 16515 982 1003 2

TABLE 1.

Parameter values for the red abalone size versus time growth curves. Models are ordered according to goodness of fit
(see Table 2). Time to fishery (TTF) in years (minimum legal size) and sensitivity of TTF in years to 10% changes

in the parameter values are presented. Functions are for length at t + 1.

Functions Parameters TTF Sensitivity

Parameters SSE tf, y

Richards [Li
–1/n(1 – e–K) + Lt

–1/ne–K]–n Li ¼ 201.0 mm 13.0 y 13.9–20 y

K ¼ 0.254 y–1

n ¼ –2.76

Logistic D R a/(1 + (Lt/b)
c) a ¼ 19.1 12.2 y

b ¼ 153.2

c ¼ 10.2

Gaussian Ae–(L–m)2/2s2 A ¼ 22.0 mm 12.0 y 10.8–12.8 y

m ¼ 62.0 mm

s ¼ 70.3 mm

Gompertz [Li
–1/n(1 – e–K) + Lt

–1/ne–K]–n Li ¼ 193.1 15.5 y

K ¼ 0.316 y–1

N ¼ 8.88 e+9

Tanaka 1/%f ln|2G + 2%G2 + fa| + d f ¼ 0.0001

G ¼ E/4 – fa/E + f d ¼ 453.6

E ¼ exp(%f (Lt – d)) a ¼ 0.002 11.6 y

Ricker BLt e
–K Lt B ¼ 1.59 mm 13.5 y 11.5–15.2 y

K ¼ 0.0216 y–1

von Bertalanffy Linf(1 – e–K) – Lt(1 – e–K) Linf ¼ 254.2 mm 11.3 y 10.3–14 y

K ¼ 0.108 y–1
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The SSR is better than it is for the true von Bertalanffy case
(leftmost curve, Richards, Fig. 2) because there is one more

fitting parameter. The equation with n taking on negative
values, which may be large from –1, –10, –100, ., –1 000 000
tending to N yields a family of quasi-sigmoidal Gompertz
curves spaced at equidistant intervals from the origin with

vertical inflection points from 8 to about 75 y. These impossibly
long induction periods preceding growth is often compensated
for by means of a negative additive parameter (Matsuishi et al.

1995), Gompertz curves are not strictly sigmoidal; for example,
the curve at n ¼ –100 000 first rises above f(Lt) ¼ 0, the Length
axis, at 38 y and attains LN at about 70 y; but the vertical

inflection point is at only 47 y, in contrast to the vertical
inflection at 56 y that one would expect of a truly sigmoidal
curve, for example, the cumulative Gaussian distribution
(Rogers 1983). Adjusting the base of the Gompertz curve

(rightmost curve in, Richards, Fig. 2) using an additive constant
of –7 y, moving the curve toward the origin, gives a time-to-
fishery ¼ 15.5 y. We do not consider this procedure optimal.

Logistic Dose-Response

The logistic dose-response curve (time-to-fishery estimate
12.2 y)

f ðLtÞ ¼ a=ð1+ðLt=bÞcÞ (11)

(Hastings 1997) fits our data with a ¼ 19.1, b ¼ 153.2, c ¼ 10.2

and SSR ¼ 13,460. It is a reverse sigmoidal transition function
(TableCurve Windows V 1.0 User’s Manual, Jandel Scientific
Corp.). Although the fit is good, leading to a small sum of

squared residuals, we reject the logistic dose-response model
because it implies a long period of constant growth followed by
a rather sharp drop to low growth (Fig. 1). This produces a

linear portion of the growth curve, followed by a short
transition to another linear growth function (Fig. 2). We believe
that this is unrealistic and that this behavior does not accurately
reflect individual red abalone growth or the average growth of a

population of abalone. We do not select the logistic dose-
response curve because of this unusual transition behavior and
the fact that the time-to-fishery estimate is comparable to that

of the Gaussian.

Gaussian

The Gaussian function (time-to-fishery estimate 12.0 y),

f ðLtÞ ¼ Ae�ðLt�mÞ2=2s2

(12)

fits the data well, having an SSR¼ 13,836, which is comparable

to that of the Richards (time-to-fishery 13.0 y) and logistic dose-
response (time-to-fishery 12.2 y) models. It is a three-parameter
model (Rogers 1983) for which the parameters are well defined

including maximum growth (A ¼ 22.0 mm y–1), size at
maximum growth (m ¼ 62.0 mm), and standard deviation (s
¼ 70.2 mm) of the distribution of maximum growth versus size.

The initial annual growth rate is DL ¼ 15.0 mm y–1. A strength
of the Gaussian model, aside from its good fit, is that it provides
a plausible growthmodel (Figs. 1 and 2) with maximum DL, at a
shell length about one third that of legal size (as opposed to

other models which predict a maximum DL at settlement near
the Y axis, which seems biologically unrealistic), and that the
parameters are mathematically well-defined. In this model,

annual growth is randomly distributed, according to shell
length, about the maximum in DL.

Tanaka

The Tanaka equation (time-to-fishery estimate 11.6 y)

f ðLtÞ ¼
1ffiffiffi
f
p ln 2G + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 + fa

q����
���� + d � Lt (13)

where G ¼ E

4
� fa

E
+ f and E ¼ expð

ffiffiffi
f

p
ðLt � dÞ can be obtained

from its differential form (Tanaka 1982, Ebert 1999). In this
equation the variables do not have a biological interpretation.

dL

dt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðt � cÞ2 + a

q (14)

using a standard integral (Barrante 1998).
The Tanaka equation has been used to model sea urchin

growth (Tanaka 1982, Ebert & Russell 1993) and is discussed in

Ebert (1999). Although the curve fit in Figure 1 appears to be
good (SSR ¼ 14,305), and the curve shape is reasonable, one
cannot generate a reasonable growth curve from this function
because the estimated length at infinite time is 453 mm, quite

unrealistic for abalone (140 mm over the world’s record), which
are not found to exceed 222 mm in length in this data set. We
reject this curve as well. Translation of the Tanaka model into a

growth curve to yield size at age is unsuccessful owing to
generation of very small and very large parameters in themodel.

Ricker

The Ricker function (time-to-fishery 13.5 y) for population
growth (Hastings 1997) translated into terms of abalone growth

is

f ðLÞ ¼ BLte
�KL
t (15)

(Ricker 1954). This model also yields a maximum in f(Lt) the
growth function and an asymptotic approach to zero that char-

acterize the data set (Fig. 1). The empirical fitting parameters
are, maximum growth rate constant, B¼ 1.59 (unitless) andK¼
0.0216 mm–1, a constant, which controls decrease in growth
rate as the animal gets larger. Fit to the present data set, it gives

SSR¼ 15,215. Initially,Lt is very small andDL¼BLt. At largerLt,
annual DL passes through a maximum as the negative exponen-
tial becomes important. Growth, though never zero, will eventu-

ally be too small to measure over a one-year period. This model
requires an arbitrary specification of the shell size at settlement
(e.g., 0.1 mm) to which the resulting f(Lt) curve is quite sensitive.

von Bertalanffy

The von Bertalanffy function (von Bertalanffy 1938), time-

to-fishery estimate is found by substituting the legal limit, 178
mm for Lt in Eq. 16 and solving for t ¼ 11.2 y.

Lt ¼ L‘ð1� e�KtÞ (16)

or

Lt+1 ¼ Lt + L‘ð1� e�KÞ � Ltð1� e�KÞ (17)

leads to a linear decrease in growth rate as a function of size.
Lt+1 and Lt in Eq. 17 refer to a discrete data set whereas Lt in
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Eq. 16 is a smooth, continuous function of t. Fit to the present
data set, the von Bertalanffy model gives SSR ¼ 16,515. (The

time to fishery estimate from the leftmost curve in the Richards
Figure 2 differs from this value owing to use of normalized
Richards parameters in Figure 2 rather than von Bertalanffy
parameters, done for the purpose of illustration.)

Sensitivity to Changes in the Parameters

We examined the robustness of each of the time to fishery
estimates in four of the seven models by changing them ±10%
then noting the behavior of the model. Results are given in the
last column of Table 1. In the first model, the Richards function,
±10% variation in the parameters yields a large change in the
estimate of years to fishery from 14–20 y. The Gaussian model

estimate of 12.0 y to fishery changes less than 2 y with 10%
changes in the parameter estimates, another point in favor of
the Gaussian model. Other models gave estimated time to enter

the fishery variations over the range shown. See Schnute (1981)
and Ebert (1999) for discussions of parameter sensitivity.

Mortality Estimates

Method 1. Beverton & Holt (1956)

Z ¼ 0:136=y

where l ¼ 115.33 mm and

lc¼ 5 mm

where LN ¼ 254.2 mm, k ¼ 0.108 y–1.
Method 2. Ssentongo & Larkin (1973)

Z ¼ 0:187=y

where LN ¼ 254.2 mm, k ¼ 0.108 y–1, lc ¼ 5.0 mm and, lm ¼
115.33 mm.

Method 3. Alverson & Carney (1975)

Z ¼ M ¼ 0:113=y

where k ¼ 0.108 y–1 and

Tmb ¼ ðmax age 50Þð0:25Þ ¼ 12:5

where LN ¼ 254.2 mm and k ¼ 0.108 y–1.

Method 4. Pauly’s Empirical Equation

Z ¼ M ¼ 0:270*=year

where Asymptotic length¼ 25.4 cm and von Bertalanffy growth
constant k ¼ 0.108 y–1 and T ¼ mean habitat temp and in this
case we use 10�C.

* Note: Pauly cautions that this method may be less useful

for sessile invertebrates than for fin-fish.
Method 5. Jolly Seber

Z ¼ M ¼ 0:228=yðSE ¼ 0:017Þ:

where (LN ¼ 254.2 mm, k ¼ 0.108 y–1).

DISCUSSION

Our results indicate that red abalone are slow growing
animals requiring approximately 12.4 ± 1 years (mean of the

four selected models) to reach the minimum legal recreational
size (shell length of 178 mm) in northern California. We
examine seven models, but we reject three of them outright

(reasons given in the results section). The range in estimates of
time to reach the fishery from the four models is quite narrow

(11.3–13.5 y) suggesting that our results are robust to model
selection. Estimates from these diverse models yield remarkably
similar results and the ranking of these diverse models accord-
ing to goodness of fit (as measured by SSR) shows that they

differ only slightly (Table 2).
We find that the Gaussian model is the most suitable of the

seven models, for describing growth using our data set and

perhaps other abalone data sets. The advantages of the
Gaussian model include a realistic description of growth over
the range of sizes examined (Fig. 1), a good fit to the data as seen

by the SSR value (Table 2), and a time to fishery prediction,
which is robust to 10% changes in the parameter values (Table
1). For these reasons we have selected the Gaussian model to
illustrate growth for red abalone over time (Table 3).

Our results indicate that red abalone grow more slowly in
northern California than in southern California. In the south,
red abalone growth estimates derived from a single model, the

von Bertalanffy model ranged from 5.6–11.3 y for the time
necessary to grow to minimum legal size (Haaker et al. 1998).
Kelps in southern California are perennials offering a more

steady supply of food resources compared with annual kelps in
northern California. In addition, red abalone in the south
exhibited interannual and individual variation in growth

(Haaker et al. 1998). Variation in individual growth is common
for abalone and many marine invertebrates (Yamaguchi 1975,
Troynikov &Gorfine 1998). Future work could examine spatial
and temporal patterns in red abalone growth in northern

California. Observation suggests that high wave energy habitats
with high rock relief and or large boulder habitats with
abundant drift algae and low incidences of shell infestation

are conditions that promote abalone growth.
Previous estimates of red abalone growth have been made

from limited growth data sets lacking juvenile growth informa-

tion. In this study, we used growth data from a wide range of
abalone sizes from 5–222 mm in shell length. As in some other
growth studies (Urban 2002, Rogers-Bennett et al. 2003),
growth information from small animals was supplemented,

because growth of small size classes is important for defining
the left side of the curve and is typically difficult to obtain. A
common problem arising from a lack of information on juvenile

growth rates has been overestimating growth of the smallest

TABLE 3.

Gaussian models predictions of red abalone shell length (mm)

of ages 1–30 y. Age and length in bold type are age

at minimum legal size for northern California.

Age Length Age Length

1 16.1 10 166.0

2 33.9 11 173.3

3 54.3 12 179.6

4 76.2 13 185.0

5 97.8 14 189.9

6 117.1 15 194.0

7 133.3 20 209.5

8 146.5 25 220.1

9 157.2 30 228.0
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individuals, a problem confounded by the use of the von
Bertalanffy model (Yamaguchi 1975). This problem could lead

to shorter time to fishery estimates and therefore more lenient
fishing policies. Slow growth suggests that conservative fishing
policies may need to bemaintained for the red abalone fishery in
northern California.

Ideally, results from the models presented here using tag
recapture data would be compared with growth estimates
derived from other methods as well as examining the impacts

of tagging on growth.Growth information can be obtained from
a time series of size frequency distributions from which one can
track the modal progression of young abalone through the size

frequency distribution over time. Unfortunately, in the case of
red abalone in northern California such a time series does not
exist nor are there other estimates of growth available.

Individual growth in red abalone is highly variable as has

been observed in other marine invertebrates. Therefore,
whereas red abalone grow to legal size in approximately 12 y,
some individuals will grow faster and some slower. Our data

contain dispersion in the region of the smallest size classes
consistent with high individual variation in growth (K). Varying
the growth constant,K, (e.g., in the Ricker model [cf. Sainsbury

1980]), produces dispersion at the smaller size classes. In
addition, our abalone growth data show a wide array of large
(final) sizes. We see a broad distribution in the largest size

classes in our data, with animals larger and smaller than the
estimated final size LN. It is possible that many of the animals
smaller than LN could be at their final size.

The biological interpretation of this broad distribution at the

largest sizes remains an important unanswered question. There
may be a wide array of final sizes because of independent values
of K and LN (cf. Sainsbury 1980) with each individual arriving

at an individual final size (LN), or a more gradual approach to
final size (cf. Beverton 1992) caused by slow continuous growth
also known as indeterminate growth (cf. Sebens 1987) or a

combination of the two. Given the first scenario, a certain
proportion of adults may never reach the minimum legal size
even at their final size, as has been suggested in other abalone
fisheries (Troynikov & Gorfine 1998) and groups of small adult

abalone have been coined ‘‘short beds.’’ This implies that a
minimum legal size would effectively exclude these small adults
from the fishery (because they would never reach the minimum

legal size). Protecting small adults could have evolutionary
implications for the population and could decrease yields after
many generations if fishing is intense, and refuges are eliminated

(Conover & Munch 2002). Given the second scenario, these
animals would not be protected from the fishery forever and
as they grow very slowly, they would eventually recruit into the

fishery. We are not aware of any conclusive studies that
determine if one or both of these scenarios occurs for red
abalone. This is an area for further research.

The von Bertalanffy model is suitable for generating mor-

tality estimates because there were few differences in the
estimates generated by the four selected growth models. The

natural mortality estimates derived from the five methods used
also yield similar estimates. Using the von Bertalanffy param-

eters we get mortality estimates ranging from 0.11–0.23 per year
(because we reject Pauly’s method) for the population studied.
Changing the final size LN parameter from 254 mm (von
Bertalanffy estimate) to 303 mm (Taylor estimate [Taylor

1958]) would result in an increase in the mortality estimate.
Caution must be taken however, not to overestimate natural
mortality, because bias in this direction would lead to lower

estimates of optimal age at first capture in fishery models
biasing estimates of egg production potentially leading to
overfishing (Sluczanowski 1984).

Previous studies have found comparable mortality estimates
of 0.15 per year for red abalone in southern California
(Tegner et al. 1989). Higher mortality rates (0.3–1.0) were found
for red abalone inside the range of the predatory sea otter in

central California (Hines & Pearse 1982), and inside fished
sites (1.02–1.35) in northern California (Leaf et al. 2007), as
might be expected. For large juveniles and adults it has been

suggested that natural mortality may not vary significantly
(Shepherd et al. 1982, Sainsbury 1982). In northern and
southern California, mortality estimates were greater for the

smallest size class (<100 mm) compared with larger size
classes (Leaf et al. 2007). Moreover, mortality estimates
differed across sites (with varying fishing pressure) whereas in

southern California, mortality varied between years (Leaf et al.
2007).

Our results indicate that the growth and mortality estimates
derived for red abalone using this data set are fairly robust to

decisions regarding model selection. Results from these models
suggest, red abalone life history parameters appear to be
characterized by slow growth and low to intermediate natural

mortality rates. Consistency in the growth estimates from these
varied models lend confidence to our results of 12 y to grow (178
mm) into the fishery in the north. Similarly, mortality estimates

using the same data set andmultiple models resulted in a narrow
range 0.11–0.23 y–1 of estimates. Knowledge of growth and
mortality estimates, as well as how these estimates are influenced
by model selection, is critical for managing abalone fisheries and

guiding restoration strategies for depleted populations.
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