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Matrix models are critical for conservation planning of endangered species or any species

with limited data. Sufficient growth data to construct growth-transition matrices required
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for size-structured population dynamics models may be lacking using traditional meth-

ods. We present a simple semi-empirical method for converting limited growth data

into estimated transition probabilities required as elements in structured matrix models.

Rather than approximating transition probabilities by counting actual transition frequen-

cies between sparsely populated size classes, we assume that a selected function represents

the entire data set, we obtain the model parameters by conventional curve fitting, and we

construct the matrix model from the assumed model function. To illustrate the method,

we use a sparse, scattered sample of growth data from the endangered white abalone. We

use the slope and intercept of the von Bertalanffy model function to determine the growth-

transition matrix elements, where the paucity and or scatter of the data preclude using the

traditional counting method. The method we propose can accommodate both linear and

non-linear mappings of size into growth rate, as we demonstrate with a Gaussian function

which has been used to model growth of red abalone and red sea urchins. We illustrate how

our method can convert confidence intervals from the model function into confidence inter-

vals for the matrix elements. We suggest that this modelling procedure, which is simple to

use and is suitable in data poor situations, will be broadly applicable for conservation practi-

tioners in developing quantitative models to evaluate the population viability of endangered

species.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative tools such as the suite of population viability
analyses (PVA), including stage-structured matrix models, are
now used in the conservation of endangered species (Caswell,
2001; Morris and Doak, 2002; Beissinger and McCullough,
2002). Elasticity analyses of matrix models can be conducted
to determine which life stages and vital rates have the most
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E-mail addresses: rogersbennett@ucdavis.edu (L. Rogers-Bennett), bklynsci@aol.com (D.W. Rogers).

influence on population growth rate (de Kroon et al., 1986), an
indicator of the life stages that recovery actions should tar-
get. Matrix models have been influential in shaping policy for
a number of endangered species including the northern spot-
ted owl (Lande, 1988), desert tortoise (Doak et al., 1994), and red
cockaded woodpeckers (Heppell et al., 1994). The results and
application of an elasticity analysis of a matrix model of log-
gerhead sea turtles are well documented (Crouse et al., 1987;
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Morris and Doak, 2002). Can these quantitative tools help us
plan for the recovery of the endangered white abalone, Haliotis
sorenseni, even when growth data are severely limited?

Abalone populations are declining around the world
(Campbell, 2000; Shepherd et al., 2001). In California, deple-
tion of the abalone complex has occurred (Dugan and Davis,
1993; Karpov et al., 2000; Rogers-Bennett et al., 2002) and the
commercial fishery is now closed. White abalone were the
first marine invertebrates to be listed as endangered, while
black, H. cracherodii, and pinto abalone, H. kamtschatkana, are
listed as species of concern. Today, white abalone are found
only in remnant populations on deep offshore banks, having
been nearly extirpated from their historic distribution by over-
fishing (Hobday et al., 2001; Lafferty et al., 2004). Recruitment
failure has been observed (Davis, 1995; Rogers-Bennett et al.,
2004) and recovery actions for this species are being consid-
ered by the NOAA Fisheries White Abalone Recovery Team,
which is drafting a recovery plan. Quantitative analyses com-
paring the relative utility of recovery actions and the severity
of threats would benefit the recovery planning process. These
analyses, however, are hindered by a lack of size-specific vital
rate data. Furthermore, for white abalone and many endan-
gered species, collection of additional data may not be feasible.

While structured matrix models have aided in the manage-
ment of some endangered species (Beissinger and Westphal,
1998), growth-transition data required to construct reliable

In our method, the selected model function is assumed to
represent a data set that may be sparse and scattered, for
construction of structured matrix models of any dimension.
We outline the mechanics of the modelling method using a
hypothetical data set fitted by the simple first order von Berta-
lanffy growth model. As a practical application, we construct a
size-based growth-transition matrix for the endangered white
abalone which has model parameters that are identical to
the hypothetical model population, but for which the actual
growth data are limited. Growth transitions depend on the
number of size classes selected (dimensions of the matrix) and
is user defined to accommodate exploring stages (or sizes) at
breaks relevant to life history or management and conserva-
tion planning. We show how the semi-empirical method can
incorporate animal growth into more than one size class dur-
ing a time step, as happens when the growth rate is larger
than the class size interval. Finally, we describe how the mod-
elling method can be used for non-linear growth models.
As a practical application to a non-linear growth versus size
model function, we treat growth data for the red abalone, H.
rufescens, using a Gaussian function (Rogers-Bennett et al., in
preparation). We illustrate how the 95% confidence limits from
the model function generate upper and lower bounds of the
growth-transition elements for use in elasticity analyses. We
examine the benefits and assumptions inherent in the semi-
empirical method.
2. Theory

We wish to determine the elements and uncertainties of a
size-based growth-transition matrix from a distribution of ani-
mal growth versus size S(t) in which there are no age data, no
discrete stages, and for which the data set is limited. We pro-
pose deriving the growth-transition probability matrix for a
distribution over equal size classes of the rate of growth d

dt
S(t)

as a function of time t derived from an assumed model func-
tion fitted to tag-recapture data. The method involves finding
the probability that an animal located anywhere in an earlier
size class will make the transition to a later size class. Because
it is based on a model function assumed to represent all data,
the model function (as distinct from the data set) is not sub-
ject to some of the statistical problems (e.g., distribution error,
stochasticity, and sampling error) that afflict the usual meth-
ods of determining growth transitions for a Lefkovitch matrix
(Caswell, 2001) from a limited number of growth frequencies.

Growth over a segment of the lifespan of an animal can be
determined using the tag-recapture method by which the ani-
mal is captured at time t1 and marked so that at some later
time t2 it can be identified and its growth over the interval
(t2 − t1) can be determined. In general, the time of birth or
larval settlement t0 is not known. Taking growth over, say, a 1-
year interval, annual growth �S(t) can be plotted against size
at initial capture S(t1) to yield a modified Walford plot (1946)
as in Fig. 1. The Walford plot (Ebert, 1999) is a (presumed) lin-
ear approach of the function S(t + 1) versus S(t) to the linear
function S(t + 1) = S(t). In our modification of the Walford plot,
we have subtracted S(t) from S(t + 1) to obtain �S(t) on the ver-
tical axis in Fig. 1 while retaining S(t) as the variable on the
horizontal axis. It is noteworthy that Walford considered only
size-based matrix models may be lacking. Meanwhile, iden-
tifying key life history stages to target recovery actions is
crucial. Typically, growth information is obtained using tag-
recapture data in which the numbers of organisms growing
into the next stage (or size) or remaining in the current stage
is observed (Caswell, 1989; Ebert, 1999). Growth transitions for
endangered species, however, are likely to be based on data
that are few and scattered. Small sample sizes can lead to
sampling error when calculating growth transitions. Clumped
data (e.g., data only for adults) can lead to distribution error.
Low recapture rates or samples from limited portions of the
size range make size class width selection difficult or arbitrary.
Vandermeer (1978) and Moloney (1986) have developed algo-
rithms that attempt to minimize sampling and distribution
errors when selecting size class widths, but they do not solve
them. In some cases, their algorithms suggest such small size
class widths that the data for an endangered species cannot
support them. Furthermore, Enright et al. (1995) demonstrated
that the number of stage classes is important and can influ-
ence elasticity values.

We present a semi-empirical method for extracting growth
probabilities from an assumed mathematical model of growth
as a function of size, which we call a “model function” as
distinguished from the function obtained by empirical curve
fitting. In the field of molecular modelling, purely theoreti-
cal models having no adjustable parameters lie at one end
of the methodological spectrum and purely empirical curve
fitting lies at the other. In between are semi-empirical mod-
els (Pople, 1999) consisting of theoretical models having one
or more parameters that are determined by empirical com-
parison to experimental data. The method we present here
is a semi-empirical treatment of a “poor” data set for white
abalone, used because it is the only data set available or likely
to be available in the forseeable future.
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Fig. 1 – Growth as a function of abalone size (shell length).
Five arbitrary size classes of 5 cm width leading to a 5 × 5
matrix are marked on the S(t) axis.

growth data above the inflection point in the S(t) versus t curve
(Walford, 1946).

The horizontal axis in Fig. 1 can be subdivided into size
intervals, which, for simplicity, we shall take as equal. Adding
a single observation of an animal’s annual growth to its initial
size tells one whether the animal has progressed from its ini-
tial size class to the next higher class (or, occasionally, skipped
one or more size classes).

Dividing the number of individuals that have progressed
out of a size class by the number of individuals initially in that
size class gives the frequency of transition from that class to
the next. This frequency is often taken as a probability. Sub-
tracting that probability from 1.0, gives the probability that an
individual initially in the selected size class will stay there.
These two probabilities are elements in the transition matrix.

By repeating this procedure over all size classes, one can
construct a matrix with transition probabilities on the princi-
pal subdiagonal (or subdiagonals) and retention probabilities
on the principal diagonal. Such a size-based growth-transition
matrix is a (partial) Leslie or Lefkovitch matrix (1965), shown
as matrix 1, where r1 is the probability of retention in size class
1, g2 is the probability of growth into size class 2, and so on:

A

⎛
⎜⎜⎜⎜

r1 0 . . . 0 0

g2 r2 . . . 0 0

.

⎞
⎟⎟⎟⎟

s
g
m
b
l
s

Once the final population matrix is constructed, it can then
be multiplied into a population vector q, consisting of a cho-
sen population distribution of (in this case) five size classes,
whereupon a new population vector is produced:

Aq(t2) = q(t3) (2)

This process can be repeated indefinitely and if it is assumed
that vital rates in the population matrix are constant over
time, future population projections can be made (Caswell,
2001). The dominant eigenvalue of the matrix, �, can be deter-
mined and if this is greater than 1.0 the model population
is increasing. If it is less than 1.0, the model population is
decreasing, given the assumptions made. Sensitivity and elas-
ticity analyses can be obtained from the population matrix in
order to examine which of the matrix elements has the most
influence on population growth �.

The method of tabulating growth transitions described
above is not ideal. All valid criticisms involving treating a
finite sample frequency distribution as though it were a prob-
ability distribution apply. In a finite sample of organism size,
there will be an uneven size distribution within or among size
classes, particularly in animals that exhibit pulsed settlement
or reproduction. Sampling error can be serious in animals
where an exposed part of the population may be over repre-
sented in the sample and a cryptic portion may be under repre-
sented. Moreover, criticisms of frequency distributions apply
= ⎜⎜⎜⎜⎝
0 g3

. . 0 0

0 0
. . . rn−1 0

0 0 . . . gn rn

⎟⎟⎟⎟⎠
(1)

When the growth-transition matrix has been constructed,
urvival can be built into the model by multiplication of the
rowth transitions by the survival estimate. Fecundity infor-
ation (the number of females produced by each female) can

e included in the top row of the matrix. Non-zero fecundities
ead to replenishment of the population through the smallest
ize class, augmenting the 1, 1 element of the matrix.
more to some size intervals than to others because there are
fewer data points in some size intervals. Vandermeer (1978)
and Moloney (1986) have proposed methods for minimizing
errors arising from the arbitrary selection of size intervals
(Caswell, 2001). In the semi-empirical method, a model func-
tion is assumed. None of the errors above exist within the
model function, which is independent of the population. Once
selected the model function is then made to coincide with the
population as closely as possible by conventional fitting meth-
ods.

3. Methods and results

3.1. The model function

We propose selecting a model function, locating it on the �S(t)
versus S(t) coordinate system by a conventional fitting pro-
cedure, then calculating the transition matrix from the fitted
curve. The philosophy behind this approach is that a model
function better represents the entire data set than transition
frequencies taken from a small sample with sparsely popu-
lated size intervals. Selection of a model function is, itself, a
profound assumption which includes, in an average way, sev-
eral error sources.

For illustrative purposes, we shall imagine a hypothetical
animal that grows over an ideal growth trajectory (see Fig. 2)
of S(t) versus t, where S(t) is the size at time t, to a limiting
size of S∞ = 25.0 cm at very long t. The animal is observed very
many times (strictly, infinitely many) over its growth period.
The model function also describes very many animals, evenly
distributed over the size range and observed at time t1 and
some later time t2. We shall take the time interval t2 − t1 as
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Fig. 2 – Size as a function of time over: (a) 30 years and (b)
2.23 years. The curve between t = 0 and 2.23 is not quite
linear.

1.00 year. In the discussion that follows, we shall imagine a
single individual on an ideal growth trajectory or an infinite
number of individuals on the same trajectory.

3.2. The growth model

Initially, let us choose the simple first order von Bertalanffy
model function:

d
dt

S(t) = −kS(t) (3)

with a growth constant k = 0.100 year−1 that is not dependent
on the time. We would first like to know how long it will take
for a hypothetical animal to reach the upper limit of the first
size class, 5.0 cm, starting from S(t) = 0. The growth equation
(Fabens, 1965; Ebert, 1999) is found by integrating Eq. (3):

S(t) = S∞(1 − e−kt) = S∞ − S∞e−kt

that is,

S∞ − S(t)
S∞

= e−kt (4)

Having stipulated that S∞ = 25.0 cm, k = 0.100 year−1, and S(t)
for the upper limit of the first size class as 5.0 cm, we have:

S∞ − S(t)
S∞

= e−kt = 25.0 − 5.0
25.0

= e−0.100t

or

ln 0.800 = −0.2231 = −0.100t, t = 2.231 years

Because the von Bertalanffy model is linear in rate d
dt

S(t)
versus t, with a horizontal intercept at 25.0 cm and a slope of
−0.100 year−1, the vertical intercept in Fig. 1 is 2.50 cm year−1.
The horizontal intercept is never reached because t is never
t∞. For an animal that is exactly 5.00 cm at t = 2.231 years, we
would like to know how big the animal was 1.00 years earlier.
We find:

t = 1.231 years

25.0 − S(t) = 25.0e−0.1231 = 22.103

S(t) = 25.0 − 22.103 = 2.897 = 2.90 cm

The animal may be anywhere on the growth curve from
0 to 5.0 cm initially. We would like to know its probability of
being close enough to the upper limit of 5.0 cm to make the
transition into size class 2. Regarding the model function as
representing many animals on the same growth curve (Fig. 2a

and b), those with initial size greater than or equal to 2.90 cm
will make it. Those with initial size less than 2.90 cm will not.

5.00 − 2.90
5.00

= 0.421 = 42% make it;

2.90
5.00

= 0.579 = 58% do not make it.

These probabilities are the elements in the first column of the
transition matrix:

⎛
⎜⎜⎜⎜⎜⎝

.58 etc.

.42

0

0

0 etc.

⎞
⎟⎟⎟⎟⎟⎠

We can check this result and see how to extend the method
by looking at the curve of S(t) versus t between t = 0 and 30 years
and between 0 and 2.3 years in Fig. 2a and b. Verticals drawn at
t = 1.2 and 2.2 years intersect the growth curve at about S(t) = 2.9
and 5.0 cm. For more complicated functions, these points can
be found using a commercial plotting or CAS program such as
Mathcad©as in Fig. 2b.

For the time to grow to 10.0 cm, a similar calculation yields
t2/5 = 5.108 years and the completed probability calculation for
t = 4.108 and 5.108 years, corresponding to sizes S(t) = 8.41 and
10.00 cm gives 10.00−8.41

5.00 = 0.32 as the proportion of animals
in the lower size class that make it into the higher class.
This yields 0.68 and 0.32 as the diagonal and subdiagonal
matrix elements in column 2 of the 5 × 5 transition matrix.
The remaining two calculations (exclusive of the 5, 5 element
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which is 1 by definition) give the transition matrix:

⎛
⎜⎜⎜⎜⎜⎝

.58 0 0 0 0

.42 .68 0 0 0

0 .32 .79 0 0

0 0 .21 .89 0

0 0 0 .11 1

⎞
⎟⎟⎟⎟⎟⎠

(6)

The probability that an animal will progress from a
lower size class to a higher size class (subdiagonal ele-
ment) decreases as the animal ages. There is a corresponding
increase in the probability that the animal will remain in it
is size class, ending up in the final size class from which
the animal does not progress. These trends are smooth and
monotonic for this model function because of the simple lin-
ear growth trend shown in Fig. 1 but they need not be either
smooth or monotonic for other size class choices or other
model functions (see below).

4. Application: white abalone

Growth data for the endangered white abalone are shown in
Fig. 3. The conventional least squares fit of the von Bertalanffy
function to the data (Eq. (3), Fig. 1) is shown as a line through
the points. Severe scatter is evident. One would be hesitant
t
m
d
t
t
n

m
t
t
i
a

F
f
A
a
m
t

other data set are statistically identical, the growth curves and
transition matrices will be the same no matter how much or
little the data are scattered.

By contrast, the transition matrix obtained by the tradi-
tional (counting) method is matrix 7, which bears little resem-
blance to matrix 6 derived from the semi-empirical model
function:

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 .167 0 0 0

0 .833 .429 0 0

0 0 .571 0 0

0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

(7)

As we should expect, the probabilities are highly depen-
dent upon the number of size classes chosen. For five equal
size classes of 3.5 cm each, either the model population or the
scattered sample of white abalone data yields the 5 × 5 matrix:

⎛
⎜⎜⎜⎜⎜⎝

.35 0 0 0 0

.65 .46 0 0 0

0 .54 .56 0 0

0 0 .44 .67 0

0 0 0 .33 .77

⎞
⎟⎟⎟⎟⎟⎠

(8)
o rely on any single point or small group of points to deter-
ine characteristics of the sample, yet that is just what one

oes in determining transition probabilities using the tradi-
ional method by counting the number of abalone that make
he transition from one arbitrarily defined size class to the
ext higher class.

The von Bertalanffy function produces a 5 × 5 transition
atrix for this sample of white abalone that is identical to

he hypothetical model matrix (matrix 6) with the exception
hat it is fitted to a very scattered data set rather than to an
deal hypothetical model. The point here is that if the slopes
nd intercepts of the (scaled) data set for white abalone or any

ig. 3 – Annual Growth vs. length (scaled from cm to mm)
or a sample of N = 21 white abalone (Tutschulte, 1976).
lthough the data are scattered, the slope −0.0993 year−1

nd intercept 252 mm are statistically identical to the
odel population, hence the S(t) vs. t curves (Fig. 2) and

ransition matrices are the same (matrix 6).
The last element on the diagonal is not 1 because S∞ is 252
and the categories only go up to 175.

For six equal size categories, covering the entire range from
0 to S∞ = 25.2 cm in Fig. 3, the categories should be 4.2 cm in
width (6 × 42 = 252). This leads to the 6 × 6 transition matrix 9.
Because the size intervals are smaller (4.2 cm as compared to
5.0 cm), the probabilities for transition from one size class to
the next are greater in matrix 9 than they are in matrix 6. Other
things being equal, the probabilities of retention in a smaller
size class are less than they are in a larger size class:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

.48 0 0 0 0 0

.52 .58 0 0 0 0

0 .42 .69 0 0 0

0 0 .31 .79 0 0

0 0 0 .21 .90 0

0 0 0 0 .10 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

Calculation of a transition matrix for size classes that are
unequal is a straightforward variation of the model method
already described. Using the present method for size classes
chosen as S(t) = 4.0, 4.0, 4.0, 6.5, 6.5 cm in Fig. 1 (sum = 25.0 cm)
gives transition matrix 10:

⎛
⎜⎜⎜⎜⎜⎝

.45 0 0 0 0

.55 .55 0 0 0

0 .45 .66 0 0

0 0 .34 .89 0

0 0 0 .11 1

⎞
⎟⎟⎟⎟⎟⎠

(10)
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In matrix 10, trends in the diagonal and subdiagonal elements
are monotonic but not smooth because of the choice of the size
classes.

5. Transitions over more than one size class

If the growth rate constant for the model is doubled to
k = 0.200 year−1 but all other characteristics of the model cal-
culation are the same, Fig. 2b is altered to give a curve that is
similar but twice as steep. One can determine the time nec-
essary to cover the first 5.00 cm growth interval as 1.116 years
and the size of the animal 1 year earlier as 0.57 cm. This leads
to the 1, 1 and 2, 1 element in matrix 11 which take the values
of 0.11 and 0.89, in which the augmented subdiagonal element
reflects the increase in the growth constant:

⎛
⎜⎜⎜⎜⎜⎝

.11 0 0 0 0

.89 .33 0 0 0

0 .67 .55 0 0

0 0 .45 .77 0

0 0 0 .23 1

⎞
⎟⎟⎟⎟⎟⎠

(11)

Matrix 11 should be compared with matrix 6 obtained
at k = 0.100 year−1. The subdiagonal elements of matrix 11
decrease approximately linearly from left to right and they

Because the growth curve is so steep, small differences in
choice of size versus growth time make a noticeable difference
in the matrix. For example, if the growth model had produced
S(t) = 6.45 cm at t = 1.00 years, the 2, 1 and 3, 1 matrix elements
would have been 0.71 and 0.29. Calculating elements in the
second column in the same way as in the first, one arrives at
0.0, 0.71, and 0.29. The remaining elements are calculated as
they were for matrix 6. The full matrix is:

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

.69 0 0 0 0

.31 .71 .04 0 0

0 .29 .96 .64 0

0 0 0 .36 1

⎞
⎟⎟⎟⎟⎟⎠

(13)

The growth parameter k = 0.300 year−1 results in a sharp
change-over from subdiagonal dominance to diagonal dom-
inance as a result of the steep growth curve. The same feature
brings about a sharp change between diagonal elements in
the third and fourth columns showing that the system rapidly
switches from growth to stasis in element 5, 5.

6. Curvilinear functions: red abalone
are slightly more than twice as large as the corresponding ele-
ments in matrix 6 (.89 compared to 2 (.42), etc.). They are not
precisely double the subdiagonal elements in matrix 6 because
the growth curve is not linear.

Increasing k to 0.300 year−1 leads to 0.738 year necessary to
reach the 5.00 barrier, that is, the probability of passing at least
into the next class in 1 years is 1.0 with 0.26 years growth time
“left over”. This leads to a growth overflow into the third size
class and a non-zero 3, 1 matrix element. If the growth curve
were linear, we would expect a ratio of animals transferring
from one size class to animals transferring to two classes to
be about 0.74:0.26. Because of curvature, this expectation is
nearly, but not quite true. When a curve is so steep, as in the
case of the curve at k = 0.300 year−1, that the width of the size
interval chosen is covered in less than 1 year, the amount of
overflow can be calculated by drawing verticals at the lower
and upper time limits of a 1.0 year time interval. Taking the
ratio of growth beyond the upper limit to growth within the
interval yields the subdiagonal and sub-subdiagonal elements
in matrix 12.

According to the model function, the size is 6.53 cm at
t = 1.00 years hence the ratio of animals transferring two
classes to those transferring one class is 6.53–5.00/5 = 0.31 rel-
ative to 0.69. The ratio 0.69:0.31 is a refinement of the previous
estimate of 0.74:0.26. The corresponding column 1 matrix ele-
ments are:

⎛
⎜⎜⎜⎜⎜⎝

0 etc.

.69

.31

0

0 etc.

⎞
⎟⎟⎟⎟⎟⎠

(12)
Functions that go through a maximum have been used to
model growth (Rogers-Bennett et al., 2003) on the reasonable
supposition that newly settled animals do not achieve their
maximum growth immediately, but have a maximum growth
rate sometime after birth (or settlement). The empirical fit of
the Gaussian model function by a commercial curve fitting
program (TableCurve®, www.systat.com) to tag-recapture data
for both red and white abalone is shown in Fig. 5(top). It yields
fitting parameters of peak height a = 22.0 mm year−1 (maxi-
mum annual growth), � = 62.0 mm (size at maximum growth),
and � = 70.2 mm (standard deviation of annual growth away
from its maximum value), for the red abalone sample (N = 231)
and 20.7 mm year−1, 37.8, and 80.7 mm year−1, respectively, for
the white abalone sample (N = 21):

�S(t) = ae−(S−�)2/2�2
(14)

Fitting is by the Levenberg–Marquardt algorithm (Lourakis,
2005), which entails iterative solution of the normal equations
arising from least squares successive approximations to the
minimum sum of squares of residuals away from a non-linear
function, the Gaussian in this case.

To obtain the S(t) versus t curve, we started at t = 0, S(t) ∼= 0,
and found �S(t) = 14.9 by Eq. (14). The size at the end of 1 year
is S(1) = 14.9 mm. This value was substituted into Eq. (14) to
give �S(t) = 17.6 mm for the second year, which was added to
S(1) to give S(2) = 32.5 mm. This recursive calculation was con-
tinued (by a simple program) to an arbitrary upper limit taken
as S(∞) = S∞, which was approximated by S(20) in this case.
The result is 20 points on an S(t) versus t curve Fig. 4 which
was roughly similar to Fig. 2a, but which showed an induc-
tion period near t = 0 giving a sigmoidal curve rather than the
exponential limiting form as in Fig. 2a.

http://www.systat.com/
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Fig. 4 – A Gaussian model of red abalone growth shell
length �S(t) vs. time (t) for abalone (N = 231) growing 1 year
in northern California (unpublished data, California
Department of Fish and Game, Burge and Schultz).

The S(t) versus t curve Fig. 4 was examined by using the
Screen Reader option of TableCurve® (or Mathcad©) to yield pre-
cise beginning and end growth times of the curve at the limits
imposed by size class selection (the vertical axis is taken to
be a locus of points). With this information, we found the ratio
of the probability that an animal grows from one size class to
the next in the way already shown, except that for the abalone
data sets, the size interval was taken as 5.0 cm. The 2, 1 sub-

diagonal element for the red abalone matrix treated here is:

50.0 − S(t − 1)
50.0

= 50.0 − 30.1
50

= 0.40

The full transfer matrix for this sample of red abalone by the
Gaussian method is matrix 15:

⎛
⎜⎜⎜⎜⎜⎝

.60 0 0 0 0

.40 .58 0 0 0

0 .42 .75 0 0

0 0 .25 .93 0

0 0 0 .07 1

⎞
⎟⎟⎟⎟⎟⎠

(15)

7. Curvilinear functions: white abalone

On the ground that red and white abalone are congeners and
that the Gaussian function represents curvilinear red abalone
growth (Fig. 5, top, left), it is reasonable to select it as a the-
oretical model function for white abalone. It is important to
note that the data set is so “poor” that it forces neither the
von Bertalanffy model nor the Gaussian model; we select the
Gaussian function because it is plausible (Rogers-Bennett et
al., 2003, in preparation). Data from well-known congeners
have been used in lieu of data for lesser known endangered
species (Caswell et al., 1998). It is when we fix the parameters

F
a

ig. 5 – Gaussian models (top) and von Bertalanffy models (botto
balone, N = 21 (right) (Tutschulte, 1976) discussed in the text.
a, �, and � by an empirical curve fitting routine (Lourakis, 2005)
that the model becomes semi-empirical (Pople, 1999). The final
curve has an empirical component because of the parameter
fit, but it is semi-empirical because the theoretical function
m) for the samples of red abalone, N = 231 (left) and white
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was selected before infusion of empirical data into the model.
The model function is independent of the data set but the
parameters are not.

8. Confidence limits and summary of
results

Using the Interval option of TableCurve® one can find the 95%
confidence limit curves above and below the �S(t) versus S(t)
curve for model functions. Using the Screen Reader option,
three numbers can be found, the value of the function at some
specific S(t), say the midpoint of the first size interval, and
the upper and lower confidence limits on �S(t) at that S(t).
For example, the upper 95% confidence limit is 2.3 mm year−1

or 12% higher than �S(t) = 19.2 mm year−1 at the midpoint of
the first size category of the Gaussian model function for red
abalone (Fig. 5, top, left).

We shall take confidence limits as being approximately
symmetrical about the function so the lower confidence limit
is ∼2.3 mm year−1 below the central value. Thinking in terms
of very many individuals progressing along the model func-
tion curve, an increase in speed of 12% will enable 12% more
of them to cross the boundary from the first size class to the
second than if the growth rate were exactly given by the model
function. Therefore, the subdiagonal matrix element will be
augmented by 12% and the element on the principal diagonal

GW =

⎛
⎜⎜⎜⎜⎜⎝

.52 ∓ .26 0 0 0 0

.48 ± .26 .67 ∓ .16 0 0 0

0 .33 ± .16 .79 ∓ .15 0 0

0 0 .21 ± .15 .93 ∓ .17 0

0 0 0 .07 ± .17 1

⎞
⎟⎟⎟⎟⎟⎠

(19)

Not surprisingly, the matrix elements are very similar for
analysis of the two congeners. Indeed, ignoring confidence
limits, BW = BR. There is little to choose between the mod-
els, i.e., the data set does not force either model function (the
apparent quality of a von Bertalanffy representation of growth
curves that go through a maximum is somewhat deceptive, as
shown by Rogers-Bennett et al., 2003). The striking differences
among the transfer matrices is not in their elements but rather
in their uncertainties as seen by contrasting the red and white
matrices 16 and 18 with matrices 17 and 19. This is, off course,
a reflection of the difference in quality of the two data sets, red
and white.

The matrices for white abalone are similar to each other but
quite different from the matrix found by the counting method
(matrix 7). The point is that for a poor data set, either model
function, or presumably any plausible model function, is a bet-
ter method of obtaining a self-consistent growth-transition
matrix than the counting method. The counting method for
red abalone produces matrix 20. Other than the 1, 1 and 2, 1
elements, matrix 20 begins to approximate matrices 16 and
will be decremented by the same amount. A comparable calcu-
lation yields both the upper and lower confidence limits of all
of the matrix elements except the 5, 5 element which is 1. For
both confidence limits, the subdiagonal elements will be incre-
mented or decremented within a range of 0.12 × 0.40 = 0.05
(±.05) and the diagonal element will be decremented or incre-
mented (∓.05) by the same amount. These confidence limits
pertain to the 1, 1 element in matrix 16.

The resulting transfer matrices are matrices 16–19, where
GR, BW, BR, and GW designate Gaussian red, Bertalanffy
white, Bertalanffy red, and Gaussian white, respectively.

GR =

⎛
⎜⎜⎜⎜⎜⎝

.60 ∓ .05 0 0 0 0

.40 ± .05 .58 ∓ .03 0 0 0

0 .42 ± .03 .75 ∓ .02 0 0

0 0 .25 ± .02 .93 ∓ .02 0

0 0 0 .07 ± .02 1

⎞
⎟⎟⎟⎟⎟⎠

(16)

BW =

⎛
⎜⎜⎜⎜⎜⎝

.58 ∓ .17 0 0 0 0

.42 ± .17 .68 ∓ .10 0 0 0

0 .32 ± .10 .79 ∓ .14 0 0

0 0 .21 ± .14 .89 ∓ .20 0

0 0 0 .11 ± .20 1

⎞
⎟⎟⎟⎟⎟⎠

(17)

BR =

⎛
⎜⎜⎜⎜⎜⎝

.58 ∓ .04 0 0 0 0

.42 ± .04 .68 ∓ .02 0 0 0

0 .32 ± .02 .79 ∓ .02 0 0

0 0 .21 ± .02 .89 ∓ .02 0

0 0 0 .11 ± .02 1

⎞
⎟⎟⎟⎟⎟⎠

(18)
18, which is not surprising for a larger and “better” data set.

⎛
⎜⎜⎜⎜⎜⎝

.91 0 0 0 0

.09 .53 .01 0 0

0 .47 .68 0 0

0 0 .30 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(20)

9. Discussion

We have presented a simple method for calculating growth
transitions using a model of growth fitted to tag-recapture
data to construct a size-based matrix model. Assuming the
model function, we circumvent problems like sampling and
distribution error that have previously been minimized, but
not eliminated, by the Vandermeer–Moloney algorithms. We
do this by making the sweeping assumption that our model
is a good representation of the data set. The transition matrix
resulting from data sets with the same slope and intercept will
be identical regardless of the scatter. We demonstrate how this
method can be used for sparse data sets frequently associated
with endangered species.

Our method is simple and yet flexible enough to accom-
modate matrices of varying sizes. In general, the smaller the
size class the faster animals will transition out of size classes,
whereas for larger size classes the probability of retention
within the size class increases. Since size class width can
have an impact on elasticity values of various matrix ele-
ments (Enright et al., 1995) these decisions of matrix size
play an important role in conservation policy decisions. This
method allows for the creation of multiple matrices of var-
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ious size class widths, to examine the influence of matrix
size, without being constrained by the limits of the data
set. Furthermore, matrices which incorporate natural break
points and sizes of importance for managers (e.g., minimum
legal sizes for exploited species) can be explored freely with-
out being constrained by limitations of the data set. Our
method also allows for incorporation of confidence limits
for each of the matrix elements relative to the model func-
tion. Conducting parameter uncertainty analyses is very help-
ful in setting future research priorities to target parame-
ters which strongly influence model outcomes (Hunter et al.,
2000).

Working from a model of growth is an improvement over
the traditional method of obtaining growth transitions for
matrices by observing the number of animals that grow out of
or remain within a size class (Rogers-Bennett and Leaf, 2006).
In a sparse data set, a change in one data point using the
traditional method can have a large impact on the transition
probabilities. In some cases, changes in survival transitions
(which include both growth and survival in stage-based mod-
els) can have a large impact on elasticity values (Ebert, 1998)
and consequently management decisions derived from the
analysis. This is a highly undesirable feature of the traditional
observation method and one that is eliminated by the model
function method presented here.

Given the limitations of the traditional method other meth-
ods have been proposed to determine growth transitions, such
a
T
d
w
w
a
e
a
a
a
t

m
r
r
v
(
m
n
d
l
p
m
t
i

a
b
i
e
n
o
t

growth parameters for green sea urchins which are the basis
of an important fishery in Maine (Chen et al., 2003).

Federico and Canziani (2005) describe a deterministic
stage-based matrix model for the South American capybara
(the largest living rodent) and they investigate the influence
of different harvesting strategies on this population. Much of
this work is preliminary, as the vital rates are, at present not
known, however, early publication of this model is appropri-
ate because resource managers need tools to aid in develop-
ing a management plan prior to exploitation (Federico and
Canziani, 2005).

We suggest our method is simple and broadly applicable
for generating growth information required for the construc-
tion of transition matrices for species with minimal data and
for which size is a good predictor of vital rate. Tagging and
recapture studies for endangered species, such as the white
abalone, may be problematic since they may induce mortality
and as such would not be recommended simply to improve
growth data for quantitative modelling. Nevertheless quanti-
tative modelling results are valuable (Heppell et al., 2000) and
desperately needed for conservation and recovery planning
(Gerber and Hatch, 2002; Morris et al., 2002). Consequently, we
propose the semi-empirical modelling method presented here
may be useful for constructing growth- transition matrices of
endangered species or any species with limited data.

r

s the direct estimation method (DEM) (Nichols et al., 1992).
he DEM method, however, requires substantial amounts of
ata to estimate transition probabilities (survival combined
ith growth) between size classes. Alternatively, data from
ell-studied similar species can be used (Caswell et al., 1998),

lthough selection of “similar” species is arbitrary (Heppell
t al., 2000). Another method, the integral projection model,
voids the problems associated with dividing continuous vari-
bles such as age and size into discrete classes (Easterling et
l., 2000), however, application of this method may be compu-
ationally challenging.

In principle, any statistical method can be used for esti-
ating projection matrix parameters, whether the data set is

ich or sparse. For example Lefkovitch (1965) first proposed a
egression method to aid in the estimation of growth and sur-
ival rates when there were limited data. Caswell and Tombley
1989) used this method in stage-based matrix models for esti-

ating zooplankton demographic parameters. Caswell (2001)
otes, however, that results are subject to unknown bias in
ata sparse situations. Davis (1995) has proposed a maximum

ikelihood method of data treatment. Values of the matrix
arameters are estimated by searching for those that maxi-
ize the probability of seeing the results obtained experimen-

ally over the time period. This method requires estimates of
nitial values of the parameters.

An iterative method for estimating growth and survival has
lso been suggested by Caswell (1989) for populations that are
est described by stages of fixed duration. In this method, an

nitial population growth rate (�) is proposed and the matrix
lements are computed from it. Next � is changed for the
ew matrix and the process is repeated until the coefficients
f the matrix are compatible with their eigenvalues. Growth-
ransition matrices have been estimated using von Bertalanffy
Acknowledgements

We thank the NOAA White Abalone Recovery Team and
their coordinator Melissa Neuman for encouraging us with
this project. This publication was supported in part by the
National Sea Grant College Program of the U.S. Department of
Commerce’s National Oceanic and Atmospheric Administra-
tion under NOAA, Grant #NAO4OAR4170038, Project #RF-198,
through the California Sea Grant Program; and in part by the
California State Resources Agency. The views expressed here
do not necessarily reflect the views of any of these organiza-
tions. Partial support was provided by the California Depart-
ment of Fish and Game Marine Region. Special thanks to K.
Rogers and Suzie’s. Contribution #2288 Bodega Marine Labo-
ratory, University of California, Davis.

e f e r e n c e s

Beissinger, S., McCullough, D. (Eds.), 2002. Population Viability
Analysis. University of Chicago Press, Chicago, Illinois, USA.

Beissinger, S., Westphal, M.I., 1998. On the use of demographic
models of population viability in endangered species
management. J. Wildl. Manage. 62, 821–841.

Campbell, A. (Ed.), 2000. Workshop on Rebuilding Abalone
Stocks in British Columbia, vol. 130. Canadian Special
Publication Fisheries Aquatic Sciences, pp. 1–150.

Caswell, H., 1989. Matrix Population Models: Construction,
Analysis and Interpretation. Sinauer, Sunderland.

Caswell, H., 2001. Matrix Population Models: Construction,
Analysis, and Interpretation, second ed. Sinauer, USA, 722
pp.

Caswell, H., Tombley, S., 1989. Estimation of stage-specific
demographic parameters for zooplankton populations:
methods based on stage classified matrix projection models.



246 e c o l o g i c a l m o d e l l i n g 1 9 5 ( 2 0 0 6 ) 237–246

In: MacDonald, L., Manley, B., Lockwood, J., Logan, J. (Eds.),
Estimation and Analysis of Insect Populations.
Springer-Verlag, New York, NY, pp. 93–107.

Caswell, H., Brault, S., Read, A.J., Smith, T.D., 1998. Harbor
porpoise and fisheries: an uncertainty analysis of incidental
mortality. Ecol. Appl. 8, 1226–1238.

Chen, Y., Hunter, M., Vadas, R., Beal, B., 2003. Developing a
growth-transition matrix for the stock assessment of the
green sea urchin (Strongylocentrotus dorebachiensis) off Maine.
Fishery Bull. 101, 737–744.

Crouse, D.T., Crowder, L.B., Caswell, H., 1987. A stage-based
population model for loggerhead sea turtles and
implications for conservation. Ecology 68, 1412–1423.

Davis, G.E., 1995. Recruitment of juvenile abalone (Haliotis spp.)
measured in artificial habitats. Mar. Freshwater Res. 46,
549–554.

de Kroon, H., Plaiser, A., van Groenendael, J., Caswell, H., 1986.
Elasticity: the relative contribution of demographic
parameters to population growth rate. Ecology 67,
1427–1431.

Doak, D., Kareiva, P., Klepetka, B., 1994. Modeling population
viability for the desert tortoise in the western Mojave
Desert. Ecol. Appl. 4, 446–460.

Dugan, J.E., Davis, G.E., 1993. Applications of marine refugia to
coastal fisheries management. Can. J. Fisheries Aquat. Sci.
50, 2029–2042.

Easterling, M.R., Ellner, S.P., Dixon, P.M., 2000. Size-specific
sensitivity: applying a new structured population model.
Ecology 81, 694–708.

Ebert, T.A., 1998. An analysis of the importance of Allee effects
in management of the red sea urchin Stongylocentrotus

Karpov, K.A., Haaker, P.L., Taniguchi, I.K., Rogers-Bennett, L.,
2000. Serial depletion and the collapse of the California
abalone (Haliotis spp.) fishery. Can. J. Fisheries Aquat. Sci.
130, 11–24.

Lafferty, K.D., Behrens, M.D., Davis, G.E., Haaker, P.L., Kushner,
D.J., Richards, D.V., Taniguchi, I.K., Tegner, M.J., 2004. Habitat
of endangered white abalone, Haliotis sorenseni. Biol.
Conserv. 116, 191–194.

Lande, R., 1988. Demographic models of the northern spotted
owl (Strix occidentalis caurina). Oecologia 75, 601–
607.

Lefkovitch, L.P., 1965. The study of population growth in
organisms grouped by stages. Biometrics 21, 1–18.

Lourakis, M.I.A., 2005. A Brief Description of the
Levenberg–Marquardt Algorithm Implemented by Levmar
(http://scholar.google.com search; levmar); also
www.ics.forth.gr/∼lourakis/levmar link:note.

Moloney, K.A., 1986. A generalized algorithm for determining
category size. Oecologia 69, 176–180.

Morris, W.F., Doak, D.F., 2002. Quantitative Conservation
Biology: Theory and Practice of Population Viability
Analysis. Sinauer Associates, USA, 480 pp.

Morris, W.F., Bloch, P.L., Hudgens, B.R., Moyle, L.C.,
Stinchcombe, J.R., 2002. Population viability analysis in
endangered species recovery plans: past use and future
plans. Ecol. Appl. 12, 708–712.

Nichols, J.D., Sauer, J.R., Pollock, K.H., Hestbeck, J.B., 1992.
Estimating transition probabilities for stage-based
population projection matrices using capture–recapture
data. Ecology 73, 306–312.

Pople, J.A., 1999. Quantum chemical models. Nobel prize

franciscanus. In: Mooi, T. (Ed.), Echinoderms. Balkema, San
Francisco, Rotterdam, pp. 619–627.

Ebert, T.A., 1999. Plant and Animal Populations. Academic
Press, San Diego, USA, 312 pp.

Enright, N.J., Franco, F., Silvertown, J., 1995. Comparing plant
life histories using elasticity analysis: the importance of life
span and the number of life-cycle stages. Oecologia 104,
79–84.

Fabens, A.S., 1965. Properties and fitting of the von Bertalanffy
growth curve. Growth 104, 265–289.

Federico, P., Canziani, G.A., 2005. Modeling the population
dynamics of capybara Hydrochaeiris hydrochaeris: a first step
towards a management plan. Ecol. Modell. 186, 111–121.

Gerber, L.E., Hatch, L.T., 2002. Are we recovering? An evaluation
of recovery criteria under the U.S. Endangered Species Act.
Ecol. Appl. 12, 668–673.

Heppell, S.S., Walters, J.R., Crowder, L.B., 1994. Evaluating
management alternatives for red-cockaded woodpeckers—a
modeling approach. J. Wildl. Manage. 58, 479–487.

Heppell, S.S., Caswell, H., Crowder, L.B., 2000. Life histories and
elasticity patterns: perturbation analysis for species with
minimal demographic data. Ecology 81, 654–665.

Hobday, A.J., Tegner, M.J., Haaker, P.L., 2001. Over-exploitation of
a broadcast spawning marine invertebrate: decline of the
white abalone. Rev. Fish Biol. Fisheries 10, 493–514.

Hunter, C.M., Moller, H., Fletcher, D., 2000. Parameter
uncertainty and elasticity analyses of a population model:
setting research priorities for shearwaters. Ecol. Modell. 134,
299–323.
address December 1998. Rev. Mod. Phys. 71, 1267–
1274.

Rogers-Bennett, L., Leaf, R.T., 2006. Elasticity analyses of
size-based red and white abalone matrix models:
management and conservation. Ecol. Appl. 16, 213–224.

Rogers-Bennett, L., Haaker, P.A., Huff, T.O., Dayton, P.K., 2002.
Estimating baseline abundances of abalone in California for
restoration. CalCOFI Rep. 43, 97–111.

Rogers-Bennett, L., Rogers, D.W., Bennett, W.A., Ebert, T.A.,
2003. Modeling red sea urchin (Strongylocentrotus franciscanus)
growth using six growth functions. Fishery Bull. 101,
614–626.

Rogers-Bennett, L., Allen, B.L., Davis, G.E., 2004. Measuring
abalone (Haliotis spp.) recruitment in California to examine
recruitment overfishing and recovery criteria. J. Shellfish
Res. 23, 1201–1207.

Rogers-Bennett, L., Rogers, D.W., Schultz, S.A. Modeling Growth
and Mortality of Red Abalone (Haliotis rufescens) in Northern
California, in preparation.

Shepherd, S.A., Rodda, K.R., Vargas, K.M., 2001. A chronicle of
collapse in two abalone stocks with proposals for
precautionary management. J. Shellfish Res. 20, 843–856.

Tutschulte, T.C., 1976. The Comparative Ecology of Three
Sympatric Abalones. Dissertation U.C. San Diego, CA, USA,
335 pp.

Vandermeer, J., 1978. Choosing category size in a stage
projection matrix. Oecologia 32, 79–84.

Walford, L.A., 1946. A new graphic method of describing the
growth of animals. Biol. Bull. 90, 141–147.

http://scholar.google.com/
http://www.ics.forth.gr/~lourakis/levmar

	A semi-empirical growth estimation method for matrix models of endangered species
	Introduction
	Theory
	Methods and results
	The model function
	The growth model

	Application: white abalone
	Transitions over more than one size class
	Curvilinear functions: red abalone
	Curvilinear functions: white abalone
	Confidence limits and summary of results
	Discussion
	Acknowledgements
	References


