UAS Remote Sensing Platforms for Emergency Response and Management

Vince Ambrosia (CSU-Monterey Bay / NASA-ARC)

Topics Addressed

- Introduction to UAS
- Current UAS Use Considerations / Regulations
- UAS Platform Decisions: Tactical vs. Strategic
- UAS Missions Supporting Disaster Monitoring
- FAA Modernization and Reform Act of 2012

 Unmanned Aircraft: A device used or intended to be used for flight in the air that has no onboard pilot;

• A "SYSTEM" Includes:

- Unmanned Aircraft (UA)
- Aircraft Control Station
- Command & Control Link/s
- Model Remote Control (hobby only)

UAS Nomenclature Designations

Who's Flying UAS

Public Use Aircraft

Department of Agriculture Department of Commerce Department of Defense Department of Energy **Department of Homeland** Security **Department of Interior Department of Justice** NASA NOAA **State Universities** State Law Enforcement

Civil Aircraft – Special Airworthiness Certificates – Experimental AAI Corporation General Atomics Northrup-Grumman AeroVironment... Others

What Are They Doing?

- Operational Military Missions
- Research: scientific and academic
- Sensor Development and Testing
- Border Patrol
- Firefighting
- Disaster Relief
- Law Enforcement
- Search and Rescue
- Note: no commercial operations currently authorized

Regulations

Regulations: Public vs Civil Aircraft

- All aircraft must comply with FAA Code of Federal Regulations (CFRs)
- Civil aircraft (airlines, general aviation):
 - Required to obtain airworthiness certification from FAA
 - Compliance with FAA standards for manufacture, maintenance, etc
- Public Aircraft (government owned)
 - By law, are not required to comply with FAA airworthiness standards, but....
 - Must have airworthiness certificate to fly in NAS
 - In-house airworthiness process

NOAA Manta

Regulations: 14 CFR 91

- Title 14, "Aeronautics and Space", Part 91 "General Operating and Flight Rules"
 - General, visual, and instrument flight rules (VFR, IFR)
 - Equipage, instrument, and certificate requirements
 - Required maintenance
- Created with manned aircraft in mind

"<u>UAS do not or cannot comply to a significant</u> portion of 14 CFR 91 at this time"

Aerosonde (NSF, CU)

Current Methods of Access

Certificate of Authorization (COA)

- Method available to Public Aircraft only
 - Federal and State government including universities
 - Provide their own airworthiness statement
- Approval given case by case
- Provides access to specific areas with limitations and requirements
- Expires 2 years after approval date unless otherwise noted
- Takes 3 months for approval

Experimental Certificates for UAS

- Available to commercial companies for testing aircraft
- Rigorous airworthiness review by FAA
- Certificate grants access to specific areas with tight restrictions for operations

Norut Cryowing

UAS Platform Decisions

UAS Platform Decisions

Tactical

LASE / LALE, small-area coverage (over-the-hill assessments)

USGS Raven

UAF ScanEagle

MALE / HALE, large-area coverage, long-duration coverage

UAS Platform Decisions

Tactical

The situations where tactical UAS (sUAS) can support disaster observations:

- Incident crews use to provide real-time photo / video and IR imagery in tactical situations;
- Direct support to incident operations;
- Conditions where manned aircraft cannot operate (smoke, night, difficult terrain, etc.);
- Support by sUAS is required immediately / ability to launch quickly

Sensor Capabilities

Small UAS < 55 pounds:

- Full Motion Video
- Small Format Frame Camera
- Thermal- Infrared
- Chemical- Gas Plume
 Detection
- Meteorologicaltemperature
- Radio Telemetry

Larger UAS Platforms:

- Electromagnetic
- Laser Range Finder
- LiDAR
- Hyperspectral
- Radars (SAR)
- Traditional Mapping Camera
- True Multispectral

sUAS: Fire Imaging

Small (tactical) UAS typical data captures and systems:

Electro-Optical Video of Prescribed Burn

Infrared Video of Prescribed Burn

UAS Platform Decisions

Strategic

The situations where strategic UAS can support disasters (wildfire) observations:

- Long-endurance data collection flights over remote fire areas, covering a large number of incidents;
- Provide communications link (radio repeater) between Incident Command (IC) and ground resources);
- Provide R/T day / night sensor imagery of fire behavior to IC;
- Ability to fly above, and out of way of all other fire aviation aircraft (out of TFR or FTA).

NASA Ikhana missions: 10/2007

NASA Ikhana UAS

MLT 17:45 08-09-44.5211 -111.5915 MAC 42 22.4M

UAS Supporting Disasters / Enviro Studies

USGS Efforts

Red Rock Lakes MT. Water Thermal Discharge

> Missouri River Erosion, South Dakota

> > USGS Raven IR video natural color

USGS Raven UAS IR Video Capture

DHS UAS Operating Locations

GRAND FORKS, ND Flight Operations Center FORT DRUM, NY Forward Operating Location

> WASHINGTON, DC Air & Marine Headquarters

OKLAHOMA CITY, OK National Air Training Center

> CORPUS CHRISTI, TX Operations Center September 2010 Deployment

FLORIDA: Maritime Operations Center 2010 Stand Up

GRAY BUTTE, CA Flight Test Center

RIVERSIDE, CA Air Operations Center

> SIERRA VISTA, AZ Flight Operations Center

Northern Region Southwest Region Southeast Region

UAS Natural Disaster Support

- Hurricane Gustav 2008
- Hurricane Hanna 2008
- Hurricane Ike 2008
- Red River Flooding, multiple years (CBP)
- Missouri River Levee / Flooding (CBP)
- AZ Wildfires, 2011 (CBP)

OPERATION: Missouri River-ND-FY11-SAR TARGET: B-6 Levee Unit SNSR/RES/Mode: Lynx SAR/1 Meter/Geo-Ref Strip LAT/LON: 40° 36' 25.39" N/ 95° 40' 21.9" W TOT: 08 July 2011 ~ 1155 CDT/ 19 July 2011 ~ 1334 CDT

ant fitta stat Baufer alter ert.

AAAI UAS Performance

UA Туре	RS-16 ™	RS-20™
Wingspan	12' 11"	17' 3"
MGTW	85 lbs	165 lbs
Endurance	12-16 hrs	6 hrs (12-16 hrs future)
Ceiling	15,000'	15,000'
Max Speed	65 kts	75 kts
Payload Envelope	6 x 6 x 20.5"	10.75 x 10.75 x 34"
Payload Capacity	25 lbs	65 lbs
Payload Power (continuous)	100 watts	400 watts
Launch	Pneumatic Catapult	
Recovery	Belly Land	
Hard Points	0	2@20 lbs ea

The most advanced, commercial, long endurance UAS fleet in the United States

© 2013 American Aerospace Advisors, Inc. All Rights Reserved.

RS-16 UAS Missions & Benefits

Inspection & Surveillance

- ROW Monitoring
- Emergency Management
 - Oil Spills
 - Fires
 - Hurricanes
 - Tornados
 - Floods
 - Search and Rescue
- Airborne Science
 Flight Test

- Simultaneous Payload Operations
 - Machinery Threat + Oil + Methane(?), and
 - Precision Weather, and
 - Ad Hoc Mobile Communications
 - Voice, data & networking
- Far greater endurance
- Ideal for "Dull, Dirty and Dangerous" missions
 - Without putting pilots in harms way
- Higher precision flight profiles
- Smaller signature
- Cost competitive in routine operations
 - Overseas: <u>Now</u>
 - In United States: <u>2 to 4 years (in rural areas)</u>

Upcoming RS-16 UAS Campaigns

- 450 square mile FAA flight authorization including areas of the Gulf of Mexico
- Oil Spill Remote Sensing Payload 1st flight on UAS

- South Texas
 - Week of March 11th
 - Flying oil spill sensor
 - Can host a few observers
- Natural Gas
 Pipeline Test
 - Proposed in April May
- Long-Range UAS Demo under COA
- Proposed on transmission corridor with both oil & gas lines

© 2013 American Aerospace Advisors, Inc. All Rights Reserved.

ASA SIERRA UAS CO2 / Methane Observations

Railroad Valley, NV

SIERRA UAS Prepared for Launch Flight Tracks and CO2 Profiles

20 June 2011: two overlapping stacks

Flight Tracks and Methane Profiles

On-board Picarro Inc. Gas Analyzer showed extensive pockets of methane seeping into air in the Railroad Valley area, attracted attention of PG&E who purchased 100 of the analyzers for field monitoring of ²⁴ methane leaks.

FAA Modernization and Reform Act of 2012: Expedited access for UAS public aircraft

- Setting a 30 Sept 2015 deadline for full integration of UAS into the NAS;
- Requiring a comprehensive integration plan within nine months;
- Requiring the FAA to create a annual UAS roadmap;
- Requiring sUAS (under 55 pounds) to be allowed to fly within 27 months;
- Requiring six UAS test sites to be established within six months;
- sUAS (under 55 pounds) be allowed to fly in the U.S. Arctic, 24 hours a day, beyond line-of-sight, at an altitude of at least 2,000 feet, within one year;
- Requiring expedited access for public users, (government) such as law enforcement, firefighters, emergency responders;
- Allowing public users to fly very small UAS (4.4 pounds or less) within 90 days- LOS, below 400 ft., daylight, outside 5 miles from airport or other aviation activities;
- Requiring the FAA to study UAS human-factors and causes of accidents.

More Resource Information

 Association of Unmanned Vehicle Systems International (AUVSI) has an excellent (Jan 2013) position paper pdf/ ppt entitled:

"Privacy and Legal Issues Associated with UAS Operations"

by Ben Gielow, Govt. Relations Manager & AUVSI General Council; gielow@auvsi.org or www.auvsi.org

- POC for DHS CBP Predator UAS Support to National Needs / Emergencies / Disasters (coastal environs, spills, fires, flooding):
 - John W. Priddy; DHS-CBP; john.w.priddy@cbp.dhs.gov
- USGS UAS National Project Office; Mike Hutt; Denver, CO; <u>mehutt@usgs.gov</u>; 303-202-4296
- American Aerospace Advisors, Inc. (AAAI), Airborne Systems Group; Dave Yoel; <u>www.American-Aerospace.net</u>; 484-995-0709

Contact Information

Vince Ambrosia

vincent.g.ambrosia@nasa.gov

650-604-6565

