Detection and characterization of subsurface
dissolved hydrocarbon plumes by in situ mass
spectrometry — A demonstration in the natural

laboratory of the Coal Oil Point seep field.
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1. Identify dissolved components under surface'_oil
slicks.

2. Identify and characterize dissolved oil componéent
plumes.

3. Use sidescan sonar to characterize plume source.

4. Test conventional fluorometric detection of dlssolved
and submerged oil

(on a shoestring budget)



How a MIMS works

in situ Membrane Introduction Mass Spectrometer

Dissolved gas transfer across a semipermeable
membrane from a sample water flow provides
sample into the mass spectrometer for analysis

Gases breakup into known fragments, which then are
used to identify the incoming gases.

Key to calibration is reduction of
water vapor from the gas stream
entering the mass spectrometer
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Introduction of Analytes from the Water
e MIMSisideal COIumn

— Passive (except for sample pumping and heating, if desired)

— Polydimethylsiloxane (PDMS) or Teflon are most common choices
(hydrophobic)

— Provides sensitive detection of dissolved gases and volatile organic
compounds

 Need to mechanically support membrane (hydrostatic pressure)

— Porous metal or ceramic frit

lon source Mass-filter Detector
Electron impact Quadrupole Electron multiplier
Membrane
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SRI MIMS Adapted for Underwater In
Situ Analysis

High pressure membrane interface

Microcontroller

Embedded PC
and other electronics

MS electronics (Inficon CPM 200)

200 amu linear quadrupole in
vacuum housing w/ heating jacket

Turbo pump (Varian/Agilent V81-M)
MIMS probe

Roughing pump (KNF Neuberger)



Portable Underwater Mass Spectrometry

=

e Simultaneous in situ quantification of

multiple analytes

— Dissolved gases

— Light hydrocarbons

— Volatile organic compounds

* High pressure, direct sample introduction :
— Under development NP/
. el % o e
= Explosives
= CW agents

= Pesticides and other pollutants



In Situ Analysis Advantages

* Reduced sample contamination
* Increased sampling speed/density
« Sample hazardous environments

* Real-time feedback
— Rapid response
— Adaptive sampling

— Gradient mapping
« Self-directed sensors

Mass spectrometry allows sensitive simultaneous detection
of multiple chemical species with high specificity



In-Water Chemical Measurements and

Inspections
e Establish background levels of hazardous compounds
— Underwater surveys on manned or unmanned vehicles
* Detect elevated concentrations of leaking chemicals
— Time series monitoring
— Periodic surveys (AUV, ROV, or R/V)
* Inspect suspected leaks
— ROV survey of location
— Real-time feedback to find source
e Determine ecosystem health
— Time series or surveys
— Monitor oxygen, carbon dioxide,
and other important biogeochemical
chemicals




Typical MIMS Diagnostic lons

M/Z VALUE COMPOUND ISOTOPIC FORM
15 Methane (CH,) 12CH, Fragment
28 Nitrogen (N,) N4N
30 Ethane (C,H) Various
32 Oxygen (0O,) 160160
34 Oxygen (0O,) 160180

Hydrogen Sulfide H,32S

(H,S)

39 Propane (C;Hyg) Various
40 Argon (Ar) 40Ar
44 Carbon Dioxide (CO,) 12160160
58 Butane (C,H,,) Various
78 Benzene (CHy) Various
92 Toluene (C,Hy) Various
106 Xylene (CgH,,) Various
128 Naphthalene (C,,H,) Various

e Full mass scans or selected ion monitoring

e A total of 40 m/z values can be monitored with a cycle time of ~ 7
sec



The Best Diagnostic lons Often are not
the most Intense
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Louisiana Crude Reference Oil Dissolved
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In Situ MIMS Calibration

e Physical parameters that affect instrument response:
Detector settings

Filament settings Constant during short deployments

Membrane geometry
Residual gas

Membrane temperature TW_tO keep constant
during deployment

Sample velocity

In situ temperature N

> Variable during deployment

Hydrostatic pressure _
(measure and calibrate)

Sample salinity y



MIMS Measurements: Calibration Procedure
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Field Campaign Details

Air pumped water to boat from depths to 50 m,
tethered to the onboard MIMS, fluorometer, and
sample stream for archive bottle samples.

Focused vertical study at Trilogy Seep (as a Rosette).

Focused study of downcurrent plume from Seep
Tent Seep. (this talk).

Downcurrent plume surveyed with a pole-mounted
sample lines from 2 m depth.

Survey zigzagged across the downcurrent plume,
using MIMS methane channel to guide sample
collection.



Spill Scientists’ Playground
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Spill Scientists’ Playground

The Coal Oil Point seep field - a natural laboratory to test data
strategifs, evaluate instrumentation performance function, and
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Some Plume Processes
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Seep Tent Seep Plume Profiling :
Propane, Butane, Pentane
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Seep Tent Seep Plume Methane
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Characteristic main-plume width depends on surface bubble dissolution and upwelling fluid
transport. Downcurrent plume affected by dissolution, and vertical and horizontal diffusion and
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Seep Tent Seep Plume Ethane
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Characteristic main-plume width depends on surface bubble dissolution and upwelling fluid
transport. Downcurrent plume clearly visible.



Seep Tent Seep Plume Propane

I."amu = 39 PHG ; zlamu = 15: CH4
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Plume still evident. Surface plume characteristic width is broader. This could be due to oil
outgassing — the effect of upwelling should be most important for methane compared to larger
molecules.
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Seep Tent Seep Plume Butane
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Plume still apparent but noise is significant. Plume characteristic width is broader. This could
be due to outgassing of oil — the effect of upwelling should be most important for methane.



Seep Tent Seep Plume Benzene
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Plume apparent for this lightest fluorescent compound. Plume characteristic width is broad and
“flat”, which is consistent with oil outgassing. Some suggestion of downcurrent plume structure
(possibly from slicks).



Seep Tent Seep Plume Toluene
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ziamu = 15: CH4

1.24 "“““T“\ S

11091 1199181992

1.22

esponse ("1( 1

i 1.2

Main plume still apparent, but less noise and similar fine-scale structure as butane, suggesting
that for toluene, greater upwelling importance. Downcurrent plume shows some of the same
characteristics as benzene and butane, not propane.



Seep Tent Seep Plume Pro,But,Benz,Tol
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Main plume still apparent, but less noise and similar fine-scale structure as butane, suggesting

that for toluene, greater upwelling importance. Downcurrent plume shows some of the same
characteristics as benzene and butane, not propane.



Seep Tent Seep Plume Oxygen
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Bubbles remove oxygen (and other dissolved air gases from plume). Upwelling plume effect
clearly is apparent in near field plume due to mixing.



Seep Tent Seep Plume Carbon Dioxide
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Carbon dioxide dissolves extremely quickly, so this shows only the deepest fluid upwelling flow
and also dissolution from the largest bubbles. Dissimilarity with other upwelling dominated
gases suggests the latter. Bubbles also remove ambient dissolved CO2, note near field recovery.
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Seep Tent Seep Plume Methane (near field)
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Characteristic main-plume width depends on surface bubble dissolution and upwelling fluid
transport. Downcurrent plume affected by dissolution, and vertical and horizontal diffusion.
Note increase shown by arrow.



Seep Tent Seep Plume Ethane (near field)
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Characteristic main-plume width depends on surface bubble dissolution and upwelling fluid
transport. Downcurrent plume clearly visible.
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Seep Tent Seep Plume Propane (near field)
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Seep Tent Seep Plume Toluene (near field)
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Seep Tent Seep Plume Air Gases (near field)
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Methane Scatter Plots
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Scatter Butane Plots
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Highest butane values are in the plume. Some correlation with methane in the downcurrent

plume.

Ethane shows distinct correlations in main plume and down current plume. Note unique

curving for values in the plume.

Benzene inversely and poorly correlated in the down-current plume, not correlated with
butane in the plume (suggesting oil dissolution rather than bubble outgassing).

Not shown — toluene and benzene correlated, suggesting toluene data is not purely noise, but

requires further analysis




Conclusions

eIn Situ MIMS can be used to study complex bubble
plume processes from natural seeps (or blowouts)

e|n situ MIMS can be used to study plume diffusion

: _processes..
*In situ MIMS can be used to study oil dissolution of

toxic components into the water column.

eIn situ MIMS overlaps fluorescent components to

= cross validate methodologies.

situ MIMS can map out low air gas zones, where the

U mt[ple gases allows validation of transport and
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Conclusions

oIn Situ MIMS can be used to map source
emissions from a seep field with fine resolution.




Conclusions

Even on a shoe string, important science and technology
demonstration and validation can succeed.
(But proper funding greatly improves the results)

eIn situ MIMS can answer a wide range of important oil spill
response, oil spill science, as well as provide data on
subsurface migration processes.

Z ,)/ __j_/ge depends on the driving force — i.e., reservoir
ressure and hydrostatlc pressure and fracture permeabillty
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