

SWFSC Central Valley Study Objectives

Acoustic tagging

- Measure overall survival
- When/where fish die
- Movement behavior
- Stock specific differences

SWFSC Central Valley Study Objectives

Mortality investigations

- Targeted local surveys
 - Water Diversions
 - Areas where high mortality observed

SWFSC Central Valley Study Objectives

Bay/Ocean research

- Relative ocean recruitment
 - By stock
 - By hatchery/wild origin
 (calibrates wild recruitment to hatchery telemetry studies)
- Early marine survival
 - Ocean influences on...
 - Develop early warning for stock crashes

Basin Scale Acoustic Telemetry

- Past/Present work and goals
 - Late fall Chinook 2007-2011 (VEMCO)
 - Hatchery Fall, Winter, Spring 2012-2015+ (JSATS)
 - Wild Fall, Spring, (Winter?) 2013-2015+ (JSATS)
- Comparative results
 - Within basin (implication for wild fish)
 - With other rivers
- Are predators the cause?
- Marine Survival implications

In-river migration survival

 During migration, Chinook salmon smolts transit many habitats that can affect survival differently, including the estuary

Late Fall Chinook Using data from 2007-2011 (5 years)

Late Fall Chinook Survival to Golden Gate 2007-2011 (5 years)

Late Fall Chinook Survival to Golden Gate 2007-2011 (5 years)

Why does survival improve during wet years?

- Faster outmigration in 2011
 - Less exposure time to areas of high mortality?

Travel time from release to ocean

2007: 24.2 +/- 3.3 SE Dry

2008: 28.9 +/- 2.8 Dry

2009: 24.5 +/- 4.3 Dry

2010: 26.4 +/- 6.1 Dry

2011: 18.9 +/- 2.0 Wet

Comparative results

Run	Years	Survival	Transit time (days)	Area of Peak Mortality
Late Fall	2007-2011	3-16%	15-28	SF Bay
Fall	2012	3-5%	8-17	SF Bay
Spring	2012	<3%		Feather River
Winter	2013	4%	33-54	Middle Sac (rkm

Observations

- stocks move at different rates
- stocks experience mortality in different areas
- survival varies between years

What's survival like in other rivers?

Fraser River 2.0 – 32.2 % (Welch et al. 2008)

Columbia River 28%

(Rechisky et al. 2009)

Predator densities and associated salmonid smolt mortality around water diversions

Cyril J. Michel*, Jeremy J. Notch, Sean A. Hayes, Steven T. Lindley

Fisheries Ecology Division - Southwest Fisheries Science Center NOAA National Marine Fisheries Service 110 Shaffer Rd, Santa Cruz, CA 95060

Freeport Regional Water Authority Intake Facility

Sacramento Water Treatment Plant Diversion

Task 2: Predator densities

- Used a dual frequency identification sonar (DIDSON) to scan the study site for predators
- From 2011-2012, 66 scans were performed throughout the fall run Chinook salmon smolt outmigration season, varying time of scan between dawn, dusk, day, and night

Question: Are predator densities higher in the vicinity of the diversion?

The Predators

 All fish measured over 30 cm were considered "predators"

The Transects

The Predators

The Zones

Predators per zone

Total Predators seen/100m scanned - Sacramento

-All zones: **2.9** (± 1.7 SD)

-Bank Zone: **3.4** (± 1.8)

-Channel zone: 1.9 (± 2.4)

-Diversion zone: $0.8 (\pm 0.8)$

Task 3: Predator diets

- Captured predators using tethers and hook and line sampling with live salmon smolts as bait
- In the 3 study years, 155 gastric lavages performed, including:
 - 118 striped bass
 - 10 Sacramento pikeminnow
 - 10 smallmouth bass
 - 9 largemouth bass

- 39.4% stomachs were empty
- 20.0% of stomachs had unidentified fish parts
- 1.9% of stomachs had salmon smolt parts

Task 3: Predator home range

Between 2011 and 2013, 140 predators have been acoustic tagged, including:

- 104 striped bass ranging from 22 to 63 cm
- 21 Sacramento pikeminnow ranging from 24 to 54 cm

Question: Are these predators aggregating near the diversions for long periods of time?

Home range?

For 2011 and 2012 seasons:

- 52 of the 57 striped bass left the study sites within 2 days of tagging, most moving downstream to the West Delta and Suisun Bay
- The remaining 5 striped bass stayed near the study sites for 2-5 months
- 5 of the 9 pikeminnow stayed in the study site for several months
- The remaining 4 pikeminnow left the study site with 2 days of tagging, most moving downstream to the North Delta

Task 4: Tethering

 Deploy tethering units baited with a live Chinook salmon smolt throughout study site

Leave them out for an hour at a time

 Deploy in tandem with DIDSON scan during dawn, dusk, day, and night events, during fall run Chinook salmon smolt outmigration season

Question: Are relative predation rates higher around the diversion versus other areas?

Tether sites: large diversions

From 2011 to 2012, a total of 64 tether events performed, deployed for 1 hour each

Relative predation rates

Relative predation rates

% Predation per zone - Sacramento

-All zones: **28.0** %

-Bank Zone: **28.8** %

-Channel zone: 18.2 %

-Diversion zone: **30.5** %

Predators and predation through the fall run smolt outmigration season

	Early April	Late April	Early May	Late May	Early June	
Sacramento						
Predators/100m scanned	0.80	1.88	7.21	3.32	3.37	
Chance of predation (%)	18.2	26.7	29.2	32.8	28.8	
Freeport						
Predators/100m scanned	0.92	2.36	4.36	3.26	2.62	
Chance of predation (%)	23.1	28.6	17.8	36.5	27.1	

San Joaquin predator study

(2014-2015)

- 1. Acoustic survey fish community
- 2. Measure predation rates (tethers)
- 3. Measure survival of acoustic tagged fish
- 4. Extensive predator removal
- 5. Repeat 1-3 above

Reach 1

NMFS Ocean Salmon Trawl Survey 1998 – 2005 (resumed 2011-2013)

NOAA

Sampling Design

Golden Gate (GG) May and June

Summer Ocean June and July

37°N

Fall Ocean (FO) October

Sampling Design

Golden Gate (GG)
May and June

Summer Ocean (SO)

June and July

Fall Ocean (FO)
October

Sampling Design

Golden Gate (GG)
May and June

Summer Ocean
(SO)
June and July

Fall Ocean (FO)

October

Growth rate

Reconstructing Selective Mortality

Reconstructing Selective Mortality

If ocean conditions are good...

Similar distributions – NO selective mortality

Reconstructing Selective Mortality

If ocean conditions are NOT so good...

Different distributions = Size selective mortality

Lindsay E. Woodson, Brian K. Wells, Rachel C. Johnson, Peter K. Weber, R. Bruce MacFarlane George E. Whitman. *In press.* Using size, growth rate and rearing origin to evaluate selective mortality of juvenile Chinook salmon *Oncorhynchus tshawytsch*a across years of varying ocean productivity. Marine Ecology Progress Series