IMPROVED ESTIMATE OF SPAWNING FRACTION, INTERVAL, AND FREQUENCY FOR BARRED SAND BASS,

BACKGROUND AND OBJECTIVES

Barred sand bass (Paralabrax nebulifer) has been a popular sport fish in southern California for decades. During the summer
spawning months barred sand bass are vulnerable to harvest impac because they form large spawning aggregations that are easily targeted by sport fishermen (Jarvis et al. 2010). Barred sand bass catch-per-unit-effort has notably declined in recent years, which has raised concerns about the sustainability of the resource and has prompted
research that will form the basis for evaluating the status of the stock.

Spawning fraction (the proportion of females spawning on any given day) and spawning frequency (the number of spawning events per female) are essential parameters for a future stock assessment because they are used to calculate spawning output. A previous study on the reproductive biology of barred sand bass reported a 1.6 day spawning
interval (number of days between spawning events; Oda et al. 1993). The samples in their study were collected during a two-week period in July, which the authors noted was the reproductive "subseason". To determine if barred sand bass spawning varies across an entire spawning season, we quantififed ovarian activity using histological cross
sections from barred sand bass ovaries collected throughout the known spawning season and into September. Improved estimates of reproductive timing and parameters should enhance fisheries management of this popular sport fish.

Our objective was to quantify the following barred sand bass reproductive parameters over the entire spawning season and by month: 1) spawning fraction, interval, and frequency, 2) the proportion of
daily spawners and non-spawners, and 3) the proportion of females with ovarian follicular atresia (i.e., degenerating ovarian follicles).

METHODS

Adult barred sand bass were collected at several locations on the San
An 1). For each fish we recorded standard and total length (mm), weight 0.01 kg), time of capture, and fishing location. All fish were humanely sacrificed. The gonads were removed and weighed to the nearest 0.01 g , fixed in 10%
formalin for $7-10$ days, and stored in 70% ethanol. Cross-sections $(2-3 \mathrm{~mm}$ formal were taken from, the center of the gonad and embedded in paraftin wax for histological analysis. Serial sections (6 Hm thick) were cut on a microtome,
mounted on slides, and stained using hemotoxylin and eosin (Loke-Smith et al. mounted on slides, and stained using hemotoxylin and eosin (Loke-Smith et al.
2010). Oocytes were categorized into the following eight developmental stages according to Lowerre-Barbieri et al. (2011): primary growth (PG), cortical
alveolar (CA), vitellogenic 1, II, and III (vtg-IIIIII), germinal vesicle migration (MN), hydration (H), and postovulatory follicle (POF) (Figure 2).

Figure 1. Barred
sand bass sampling sand bass sampling
locations on the San Pedro Shelf,
California.

The most commonly used method for estimating spawning fraction in multiple spawning fishes is the postovulatory follicle method (Ganias et al.
2011). A barred sand bass postovulatory follicle aging key based on timed 2011ial A Acarifices sand (Oda et al. 1993) was generated from labeled histological
serich slides archived at the Natural History Museum of tom Angeles. The stides were
referenced to assign ages to those POFs identified in the current study e.g. referenced to assign ages to those POFs identified in the current study (e.g.
day $0=$ = ess than 4 hours old, day $1=4$ to 24 hours old, and day $2+=$ greater day $0=$ less than 4 hours old, day 114 to 24 hours old, and day $2+=$ greater
than 24 hours old; Figure 2,). Criteria ar or our spawning fraction calculations were fish with day 0 and/or day 1 POFs. Non spawning fish were females with
no evidence of new or old postovulatory follicles. Daily spawning activity was no evidence of new or old postovulatory follicles. Daily spawning activity was
identified by the presence of at least one of the four following combinations of oocyte developmental stages according to Oda et al. ((1993): day 1 POFs and MN, day 1 POFs and H, day 1 and day $2+$ POFs, day 0 and day 1 POFs and
day 0 PFs and H (Figure 2, 3). Te presence of varian ollicular atresi was day 0 POFs and H (Figure 2, 3). The presence of ovarian follicular atresia was
assigned to females having multiple atretic follicles. Monthly differences in assigned to females having muttiple atretic folicicles. Monthly differences in
reproductive parameters were tested using Chi square Test of Homogeneity reproductive parameters were tested using Chi square Test of Homogeneity
(appha= 0.05 and donefrron multipe comparisons a a hoc. We report tdiuste
Wald 95% conidence intervals (fauro and Lewis 2005) with proportion data.

RESULTS

1) Spawning condition was indicated by the presence or absence of postovulatory follicles (POFs) migratory nuclei, hydrated oocytes, and atretic follicles.

Figure 2. Images of representative ovary sections at $4 x$ magnification for females collected in A) June (developing), B) July (spawning capable), C) August (spawning
 follicle, $\mathrm{POF}_{1}=$ day 1 postovulatory follicle, $P O F_{2}=$ day $2+$ postovulatory follicle, $A=$ atretic follicle
2) The age of postovulatory follicles indicated how recently females had spawned.

Figure 3. Images of representative
ovary sections at $20 x$ magnification ovary sections at 20x magnificatio
for females with A) day O POF (spawned within the last 4 hr),)
day 1 POF (spawned between 4 day 1 POF (spawned between $2+1$
and 24 hr ago), and C) day $2+$ POF (spawned 24 hr or more prior
to collection).
4) The proportion of females spawning (spawning fraction) was

5) Evidence of recent spawning activity was highest in July.

3) The spawning interval, frequency of spawning events, and the proportion of daily spawners varied by sampling month

Table e . Spawning interval and frequency, and proportion of females
showing evidence of showing evidence of daily spawning by sampling month

	Spawning Interval (days)	Spawning Frequency (events)	Proportion of Dpawners
Spawn	6.00	5.00	0.08
June	1.74	17.80	0.44
July	2.00	15.50	0.38
August	2.00	3.33	0.00
September	9.00		

6) The proportion of non-spawning females was highest in June and September.

7) The incidence of follicular atresia was highest in September indicating the end of spawning season.

DISCUSSION Our histological examination of barred sand bass ovaries indicated females collected on the San Pedro Shelf spawned for approximatel free months in 2011, and reproducive parameters varied montily within the spawning season.
The July spawning interval (1.74) calculated in the present study is similar to the previous estimate obtained in late July (1.67) by Oda e changed over time. Future estimates of spawning interval should be calculated to verify its consistency over time. The annual spawning fraction of another batch spawner in southern California, Paciific ardine, Sardinops sagax, was similarly consistent over time (Macewicz et al. 1996).

Water temperature can affect POF re-absorption rates in multiple spawning fishes (Hunter and Macewicz 1985; Lowerre-Barbierrie et al. 2011). Although the POF aging key we used in the current study was based on barred sand bass coliected in 1988 (Oda et al. 199y , C) was within the range of water temperatures reported in the previous study ($16.9-19.9^{\circ} \mathrm{C}$) providing confidence in our spawning parameter estimates.
Accurate measures of barred sand bass spawning seasonality are necessary for quantifying reproductive potential; however, barred months, June-August, in Clark (1932) to six months, April-September in Love (2011). Clark's estimate was based on gross observations of barred sand bass ovaries in commercially landed fish from May to the spawning seasonality of kelp bass, P. clathratus, a southern California congener. Eighty years after Clark (1932) reported her ndings, our examination of barred sand bass histological ovary sections indicates similar spawning season duration.

Spawning frequency is an estimate of spawning potential that is derived using spawning interval. Our spawning interval estimates varied by month, which highlights the importance of sampling throughout the spawning season in order to obtain a realistic estimate

REFERENCES

 Le-Smith K.A. M.A. Sundoerg. K. K. Young. and C.G. Lowe. 2010. . Se of morphology and

 Paralabax
122-134.
 Ergonomics sociely 49it Anual Meeting, pp. $21100-2104$.
ACKNOWL EDGMENTS
 Feeney (Natural History Museum of Los Angeles. provided the
archived bared sand bass sistology slides. This study was tunde
the Federal Aid in Sport Fish Restoration Act Grant $\# F-50$-R-24.

