


## **California Department of Fish and Game**



### **Klamath River Project**

# Recovery of Fall-run Chinook and Coho Salmon at Iron Gate Hatchery October 4, 2011 to December 12, 2011



Prepared by:
Diana Chesney and Morgan Knechtle
California Department of Fish and Game
Klamath River Project
1625 South Main Street
Yreka, CA 96097

July 2012

#### **ABSTRACT**

A total of 18,039 fall-run Chinook salmon, (Chinook, *Oncorhynchus tshawytscha*, entered Iron Gate Hatchery (IGH) during the fall 2011 spawning season from October 4, 2011 through November 29, 2011. Klamath River Project (KRP) staff systematically (random) sampled 1 in every 10 Chinook as well as all adipose-clipped (AD) Chinook during recovery efforts, for a sample size of 4,976. Scale samples and sex and fork length data were collected for all sampled Chinook. Analysis of the length-frequency distribution for randomly sampled Chinook males indicates that the preliminary cutoff point between grilse and adults occurred at ≤ 62 cm fork length. Randomly sampled male Chinook ranged in size from 41 to 103 cm. fork length, and randomly sampled female Chinook ranged from 55 to 93 cm. fork length. Based on scale age analysis, the KRTAT estimated that 52.9% (9,549) of the run were grilse. Females accounted for 26.5% (4,772) of the run while males accounted for 73.5% (13,267). The 2011 return to IGH contributed roughly 10% to the total (Klamath basin) in-river run and 12% to the total spawner escapement. Based on coded wire tag expansion, KRP staff estimated that 84% of the Chinook (both grilse and adults) entering IGH during the 2011 season were of hatchery origin.

A total of 586 coho salmon (coho, Oncorhynchus kisutch) entered IGH during the 2011 spawning season. The recorded dates for the coho run were from October 10, 2011 to December 12, 2011. KRP staff collected biological data (sex, fork length, presence of marks or clips, scale samples, and tissue samples) on every coho that entered the hatchery as well as otoliths from coho used for spawning. Males ranged in size from 38 to 80 cm. fork length, while females ranged in size from 46 to 76 cm. fork length. Based on the length frequency distribution of 382 male coho, grilse were estimated to be < 55 cm. fork length, for an age composition of 22.5% grisle and 77.5% adult coho in 2011. Of the 586 coho sampled by KRP staff, 522 (89%) had left maxillary clips, 63 (10.9%) had no clips. and one (0.1%) had both a left and a right maxillary clip. Two adipose-clipped coho were recovered at IGH during the 2011 season. These 2 fish were scanned for the presence of a coded wire tag, but were negative. For the second year, coho were spawned at IGH in 2011using a spawning matrix provided weekly by NOAA Fisheries Salmon Genetics Repository in Santa Cruz, CA., using tissue samples obtained from coho as they entered IGH. All coho salmon (except for the first 22) entering IGH during the 2011 were pit tagged. A targeted number entering each week were also disc tagged and held pending genetic analysis for potential use as brood stock. Any coho not utilized as brood stock were released back to the Klamath River at Iron Gate Hatchery.

#### INTRODUCTION

#### Iron Gate Hatchery

The Iron Gate Hatchery (IGH) is located adjacent to the Klamath River (river mile 190), in Siskiyou County, CA, approximately 120 miles north of Redding, near the Oregon border (Figure 1). This hatchery was established in 1963 to mitigate for loss of habitat between Iron Gate Dam and Copco Dam. The production goals for the hatchery are listed in Table 1 (CDFG and PP&L 1996).

Table 1. Production goals for anadromous salmonid releases from Iron Gate Hatchery, Klamath River.

| Species        | Number released   | Released  | Run timing                      |
|----------------|-------------------|-----------|---------------------------------|
| Chinook Salmon | 5,100,000 smolts  | May-June  | mid September to early November |
|                | 900,000 yearlings | November  |                                 |
| Coho           | 75,000 yearlings  | March     | late October to early January   |
| Steelhead      | 200,000 yearlings | March-May | November to March               |

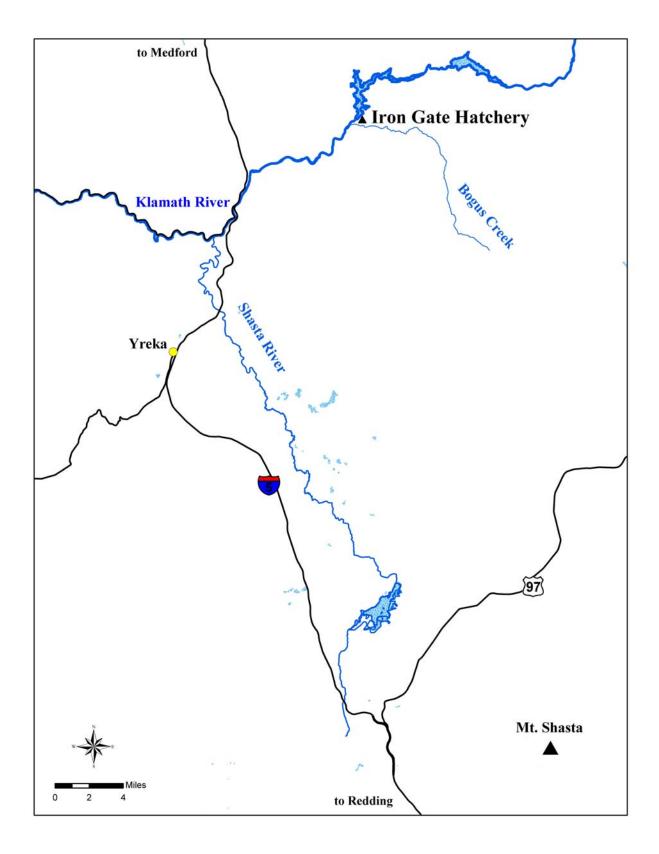



Figure 1. Location of Iron Gate Hatchery, Siskiyou County, California.

#### Klamath River Project

The California Department of Fish and Game's (CDFG) Klamath River Project (KRP) conducts systematic random sampling of fall-run Chinook (Chinook) salmon annually during the spawning season. The purpose of the sampling is to characterize the adult Chinook run entering IGH in terms of age and sex composition, and to recover data from all coded wire tags (CWT) recovered from the heads of adipose fin clipped (AD) Chinook. All Chinook tagged at IGH are marked with an adipose fin clip to identify the CWT salmon when they return to the hatchery or other locations during subsequent spawning seasons. Data from CWT fish provide a reference of known-age fish which is used, along with scale samples and analysis of length frequency distribution, to determine the age composition of the run. KRP staff also sample coho salmon (coho) that enter IGH, typically from mid October through December.

#### **Coded Wire Tagging**

2011 was the third year of 25 percent constant fractional marking at IGH. A total of 905,505 juvenile Chinook (671,755 to be released as fingerlings and 233,750 to be released as yearlings) were AD clipped and coded wire tagged in 2011. The total release of tagged and untagged fingerlings was 3,980,328. Due to an outbreak of coldwater disease among Chinook fingerlings in the spring of 2011, tagging was delayed and both the tag rates and release dates were affected. The approximate tag rate for the fingerling release group was 18%, and for the yearling group, 25%. The first three raceways (C, D and E) of Chinook fingerlings each received a unique tag code, while series F, G and H shared a tag code.

In 2011, as in 2010, tagging operations at IGH were conducted by Pacific States Marine Fisheries Commission personnel in collaboration with CDFG.

#### **MATERIALS AND METHODS**

#### Chinook Salmon

Starting in 1997 all Chinook entering the fish ladders have been allowed to enter IGH. Upon entering the hatchery, Chinook selected by IGH staff as brood stock are spawned or held in round tanks until they are ready to spawn. Readiness to spawn is determined by hatchery staff and based on timing, firmness of the ovaries, and ease of stripping eggs when handled. Once daily or weekly egg goals are met, extra Chinook are sacrificed and sent to a processing plant. In 2011, KRP staff conducted a systematic random sample of every 10<sup>th</sup> Chinook along the process line, as well as all AD Chinook. These random and non-random fish were set aside for sampling. Sampling included collection of data on fork length, sex, presence or absence of clips and/or marks, scale samples and spawning disposition. All Chinook leaving the hatchery building were put on ice and trucked to a processing plant for eventual distribution.

Heads were taken from all AD Chinook (random and non-random fish) as well as data on fork length and sex, and scale samples. Heads collected from AD-clipped fish were run through a tag detector prior to freezing, and whether a tag was detected was noted on the data sheets. All heads were sent to the KRP's Arcata office for tag extraction and reading.

Preliminary grilse and adult cutoff fork lengths were determined using length frequency analysis of randomly sampled male Chinook, and final grilse/adult and age composition determinations were made by the Klamath River Technical Advisory Team (KRTAT) using scale age proportions.

#### **Coho Salmon**

As coho entered IGH in 2011, hatchery personnel anaesthetized the fish using CO2, determined whether each fish would be retained for potential spawning or released back to the river, then sent the fish to a processing tank, where KRP staff collected biological data including tissue samples, scale samples, fork length, sex and clip/tag information. Those coho retained as potential brood stock were given a disc tag with a unique number and a passive integrated transponder (PIT) tag with a unique number, then allowed to recover in fresh water before being put into hatchery holding tanks. Tissue samples were sent to the National Oceanic and Atmospheric Administration (NOAA) salmon genetics repository in Santa Cruz, CA. via overnight Federal Express. Fish to be released were given a PIT tag only, allowed to recover and released into the river at the spawning building location.

As in 2010, NOAA genetics laboratory staff developed a spawning matrix designed to minimize the spawning of closely related individuals. The weekly matrix, sent via e-mail to the KRP, displayed a series of columns with the disc tag number of each female coho at the top of a column, and beneath it, disc tag numbers of males in descending order of spawning suitability for that female. Males which were determined to be too closely related to any given female were denoted with an asterisk as "do not spawn" and were listed at the bottom of each column (Table 2).

On subsequent spawning days, coho were brought into the hatchery from the holding tanks and spawning readiness was determined by IGH personnel. Each female determined ready to spawn was killed and held on the spawning table; then as spawning-ready males were brought in, disc tag numbers were matched with the spawning matrix to find the best-suited males for each female. In 2011, coho crosses were 2:1 (two males to one female), except for three pairings where only one male was available. IGH and KRP personnel tracked the use of marked vs. unmarked individuals and the use of grilse for spawning. Otoliths were collected from all spawned coho.

Table 2. Sample breeding matrix provided by the NOAA Salmon Genetics Repository for Iron Gate Hatchery in 2011 (Females are listed along the top row and males are listed in columns below each female).

| F_029F          | F_032F           | F_035F               | F_047F   | F_050F   | F_061F               | F_064F   | F_065F               | F_067F   | F_077F   | F_078F               | F_080F     |
|-----------------|------------------|----------------------|----------|----------|----------------------|----------|----------------------|----------|----------|----------------------|------------|
| M_166M          | M_181M           | M_48M                | M_185M   | M_153M   | M_24M                | M_187M   | M_163M               | M_24M    | M_166M   | M_186M               | M_181M     |
| M_164M          | M_102M           | M_164M               | M_165M   | M_150M   | M_50M                | M_176M   | M_153M               | M_150M   | M_117M   | M_141M               | M_184M     |
| M_56M           | M_154M           | M_153M               | M_164M   | M_184M   | M_118M               | M_153M   | M_150M               | M_174M   | M_167M   | M_180M               | M_187M     |
| M_124M          | M_172M           | M_166M               | M_171M   | M_165M   | M_185M               | M_150M   | M_164M               | M_176M   | M_176M   | M_155M               | M_24M      |
| M_176M          | M_165M           | M_124M               | M_154M   | M_47M    | M_168M               | M_178M   | M_174M               | M_155M   | M_102M   | M_184M               | M_186M     |
| M_102M          | M_174M           | M_118M               | M_150M   | M_178M   | M_124M               | M_24M    | M_184M               | M_77M    | M_161M   | M_24M                | M_67M      |
| M_159M          | M_153M           | M_56M                | M_153M   | M_24M    | M_165M               | M_171M   | M_176M               | M_164M   | M_119M   | M_174M               | M_185M     |
| M_118M          | M_169M           | M_134M               | M_166M   | M_181M   | M_153M               | M_165M   | M_24M                | M_50M    | M_168M   | M_56M                | M_160M     |
| M_47M           | M_177M           | M_162M               | M_124M   | M_185M   | M_177M               | M_47M    | M_48M                | M_47M    | M_162M   | M_185M               | M_45M      |
| M_181M          | M_184M           | M_172M               | M_118M   | M_160M   | M_183M               | M_184M   | M_77M                | M_162M   | M_159M   | M_143M               | M_169M     |
| M_165M          | M_183M           | M_185M               | M_183M   | M_134M   | M_150M               | M_155M   | M_162M               | M_182M   | M_153M   | M_61M                | M_177M     |
| M_153M          | M_161M           | M_159M               | M_181M   | M_186M   | M_159M               | M_185M   | M_116M               | M_178M   | M_184M   | M_50M                | M_171M     |
| M_183M          | M_170M           | M_180M               | M_169M   | M_171M   | M_176M               | M_161M   | M_178M               | M_143M   | M_172M   | M_168M               | M_141M     |
| M_163M          | M_131M           | M_169M               | M_141M   | M_176M   | M_166M               | M_61M    | M_166M               | M_185M   | M_177M   | M_48M                | M_154M     |
| M_177M          | M_176M           | M_47M                | M_24M    | M_102M   | M_162M               | M_174M   | M_143M               | M_166M   | M_160M   | M_150M               | M_168M     |
| M_154M          | M_166M           | M_178M               | M_177M   | M_173M   | M_178M               | M_77M    | M_165M               | M_184M   | M_24M    | M_169M               | M_56M      |
| M_167M          | M_164M           | M_182M               | M_47M    | M_77M    | M_164M               | M_48M    | M_182M               | M_134M   | M_181M   | M_182M               | M_161M     |
| M_150M          | M_152M           | M_88M                | M_184M   | M_187M   | M_167M               | M_119M   | M_124M               | M_165M   | M_56M    | M_77M                | M_150M     |
| M_134M          | M_175M           | M_131M               | M_168M   | M_141M   | M_154M               | M_175M   | M_47M                | M_159M   | M_163M   | M_187M               | M_159M     |
| M_174M          | M_118M           | M_141M               | M_45M    | M_174M   | M_169M               | M_186M   | M_134M               | M_153M   | M_88M    | M_67M                | M_180M     |
| M_182M          | M_141M           | M_150M               | M_50M    | M_61M    | M_184M               | M_141M   | M_181M               | M_61M    | M_131M   | M_134M               | M_175M     |
| M_162M          | M_143M           | M_163M               | M_143M   | M_180M   | M_181M               | M_181M   | M_102M               | M_45M    | M_150M   | M_172M               | M_173M     |
| M_161M          | M_171M           | M_155M               | M_102M   | M_183M   | M_171M               | M_182M   | M_119M               | M_173M   | M_140M   | M_171M               | M_178M     |
| M_143M          | M_67M            | M_117M               | M_48M    | M_155M   | M_131M               | M_180M   | M_161M               | M_175M   | M_50M    | M_170M               | M_167M     |
| M_88M           | M_150M           | M_152M               | M_186M   | M_161M   | M_102M               | M_162M   | M_173M               | M_118M   | M_183M   | M_178M               | M_152M     |
| M_48M           | M_117M           | M_140M               | M_175M   | M_131M   | M_45M                | M_173M   | M_45M                | M_169M   | M_48M    | M_47M                | M_170M     |
| M_185M          | M_159M           | M_160M               | M_162M   | M_172M   | M_175M               | M_164M   | M_140M               | M_187M   | M_179M   | M_45M                | M_131M     |
| M_24M           | M_187M           | M_177M               | M_178M   | M_159M   | M_155M               | M_134M   | M_56M                | M_48M    | M_178M   | M_175M               | M_143M     |
| M_175M          | M_124M           | M_61M                | M_187M   | M_168M   | M_161M               | M_88M    | M_141M               | M_163M   | M_61M    | M_88M                | M_182M     |
| M_178M          | M_186M           | M_183M               | M_170M   | M_169M   | M_182M               | M_179M   | M_179M               | M_180M   | M_134M   | M_176M               | M_119M     |
| M_172M          | M_185M           | M_171M               | M_56M    | M_182M   | M_180M               | M_159M   | M_88M                | M_171M   | M_152M   | M_177M               | M_140M     |
| M_179M          | M_56M            | M_167M               | M_180M   | M_170M   | M_160M               | M_172M   | M_50M                | M_183M   | M_47M    | M_181M               | M_172M     |
| M_171M          | M_168M           | M_45M                | M_182M   | M_56M    | M_186M               | M_154M   | M_118M               | M_116M   | M_118M   | M_119M               | M_176M     |
| M_117M          | M_163M           | M_77M                | M_131M   | M_166M   | M_134M               | M_102M   | M_154M               | M_124M   | M_175M   | M_173M               | M_50M      |
| M_169M          | M_178M           | M_176M               | M_161M   | M_175M   | M_143M               | M_166M   | M_175M               | M_154M   | M_67M    | M_153M               | M_179M     |
| M_184M          | M_24M            | M_143M               | M_176M   | M_177M   | M_61M                | M_160M   | M_171M               | M_119M   | M_170M   | M_164M               | M_174M     |
| M_131M          | M_179M           | M_186M               | M_172M   | M_119M   | M_170M               | M_116M   | M_186M               | M_141M   | M_77M    | M_183M               | M_183M     |
| M_45M           | M_77M            | M_50M                | M_160M   | M_48M    | M_77M                | M_143M   | M_172M               | M_186M   | M_171M   | M_152M               | M_116M     |
| M_173M          | M_180M           | M_168M               | M_88M**  | M_179M   | M_173M               | M_163M   | M_155M               | M_168M   | M_186M   | M_161M               | M_48M      |
| M_119M          | M_162M           | M_179M               | M_77M**  | M_124M   | M_48M                | M_170M   | M_169M               | M_167M   | M_180M   | M_165M               | M_77M      |
| M_140M          | M_45M            | M_119M               | M_159M** | _        | M_174M               | M_118M** | M_61M                | M_161M   | M_154M   | M_116M               | M_117M     |
| M_141M          | M_173M           | M_181M               | M_152M** | M_162M   | M_141M               | M_169M** | M_160M               | M_177M   | M_187M   | M_162M               | M_88M**    |
| M_170M          | M_47M            | M_170M               | M_167M** |          | M_152M**             | M_183M** | M_187M               | M_179M   | M_124M   | M_166M               | M_165M**   |
| M_180M          | M_167M           | M_174M               | M_173M** |          | M_187M**             | _        | M_183M               | M_172M   | M_165M   | M_124M               | M_102M**   |
| M_77M           | M_116M           | M_175M               | M_134M** | _        | M_47M**              | M_131M** | M_159M               | M_102M   | _        | M_118M**             | _          |
| M_187M          | M_88M            | M_161M               |          | M_143M** | M_56M**              | M_177M** |                      | M_140M   |          | M_179M**             |            |
| M_50M<br>M_116M | M_140M<br>M_182M | M_67M<br>M_173M      | M_179M** |          | M_67M**              | M_124M** |                      | M_131M   |          | M_159M**             |            |
| M_116M          | M_182M           | M_173M<br>M_24M      |          | M_167M** | _                    |          | _                    | M_170M** | M_174M** |                      |            |
| M_61M**         | M_50M**          | M_24M<br>M_102M      | _        | M_116M** | M_163M**             | M_168M** | M_117M**             | M_152M** | M_45M**  | M_131M**             |            |
|                 | M_134M**         |                      |          | M_154M** |                      | M_56M**  | M_167M**             |          |          | M_154M**             |            |
|                 |                  | M_165M**<br>M_184M** |          | M 67M**  | M_119M**<br>M_140M** |          | M_180M**<br>M_177M** |          |          | M_160M**<br>M_163M** |            |
| M 160M**        |                  |                      |          | M_163M** |                      |          | M 168M**             |          | M_173M** |                      |            |
|                 |                  | M_154M**             |          |          |                      |          | M 67M**              |          | M 141M** |                      |            |
| M_67M**         | M_48M**          |                      |          |          |                      | M_167M** |                      |          |          |                      |            |
| IVI_O/ IVI      | IVI_4OIVI        | IVI_ 1 TOIVI         | W_1 10W  | W_140W   | 1417141              | W_1071VI | 141_192141           | 1417141  | W_140W   | IVI_ 1 17 IVI        | IVI_47 IVI |

After IGH reached its egg-taking goal, all coho not used in spawning were released into the river. KRP personnel removed the disc tags and recorded the PIT tag numbers of released fish. PIT tag numbers of released coho that re-entered the hatchery were recorded as well. All coho tissue samples were sent at the end of the season to the NOAA facility in Santa Cruz.

#### **RESULTS**

#### **Chinook Salmon**

Chinook began entering IGH on October 4, 2011. A total of 18,039 Chinook returned to IGH during the fall 2011 spawning season. Of these, KRP staff collected scale samples, determined sex, and measured fork lengths for 4,976 Chinook. Randomly sampled male Chinook ranged in size from 44 to 103 cm. fork length (Figure 2), and randomly sampled female Chinook ranged from 55 to 93 cm. fork length (Figure 3). A preliminary grilse cutoff was made using the length frequency distribution for 1,313 randomly sampled Chinook males. The preliminary cutoff point between grilse and adults occurred at  $\leq$  62 cm. in fork length, yielding approximately 51.8% grilse (9,344 grilse and 8,,695 adults). Final grilse and adult proportions and age composition determinations were made by the KRTAT using scale age proportions, for a grilse component of 52.9% (9,549) and an adult component of 47.1% (8,490). Females accounted for 26.5% (4,772) of the run and males accounted for 73.5% (13,267). The last Chinook of the season entered IGH on December 9, 2011.

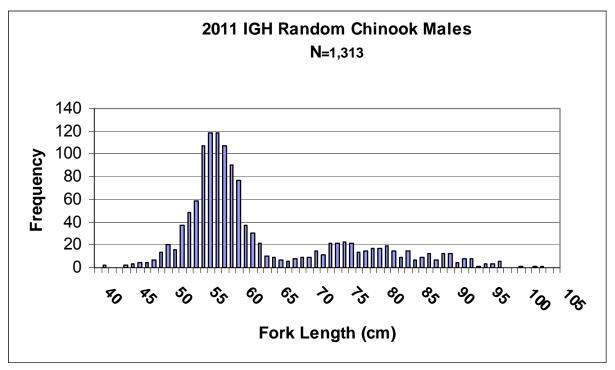



Figure 2. Length frequency distribution for random sample of male Chinook salmon recovered at IGH during the 2011 spawning season.

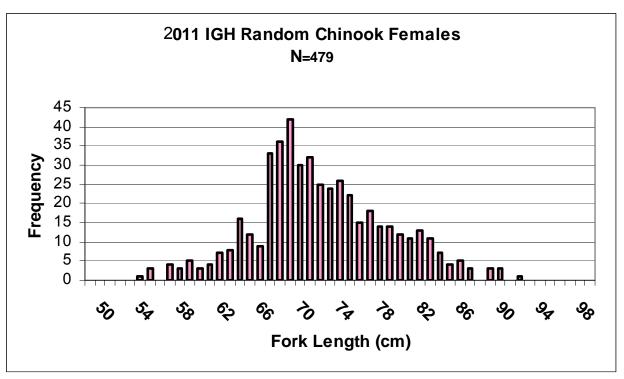



Figure 3. Length frequency distribution for random sample of female Chinook salmon recovered at IGH during the 2011 spawning season.

Heads from 3,509 AD Chinook (from random and non-random fish) were collected for CWT recovery, of which 3,415 had CWTs. Of these, 20 CWTs were lost during dissection and 5 CWTs were unreadable. The contribution of lost or unreadable CWTs was estimated by applying the proportions of known CWTs (3,415) to the 25 lost or unreadable CWTs. (Table 3).

The estimated contribution of unknown CWTs was then added to the contribution of known CWTs to determine the total contribution of hatchery Chinook entering IGH. All but 3 of the 3,415 CWTs recovered (and successfully read) originated from IGH, and the remaining 3 originated from Trinity River Hatchery (TRH). Based on the expansion of CWTs, KRP staff estimated that 84.5% of the Chinook entering IGH during the 2011 season were of hatchery origin (Table 4). Of the expanded CWT returns in 2011, 2,200 (15%) were from yearling release groups and 12,928 (85%) were from smolt release groups

The Klamath River Technical Advisory Team (KRTAT) met in February of 2012 to review the 2011 Chinook run monitoring efforts and estimate the age composition of the 2011 run (KRTAT 2012). The KRTAT used scale age proportions for developing adult age structure and the grilse cutoff point for the 2011 IGH fall Chinook returns (Table 5).

Table 3. Estimated contribution of 25 Ad-cliped Chinook salmon with unknown coded-wire-tag (CWT) codes (lost or unreadable) that were recovered at Iron Gate Hatchery (IGH) based on the proportional distribution of known CWTs recovered at IGH during the 2011 season.

| CWT       | BY   | # CWTs<br>Recovered | Proportion of CWTs recovered | Estimated<br>Number | Production<br>Multiplier | Expanded<br>Estimate |
|-----------|------|---------------------|------------------------------|---------------------|--------------------------|----------------------|
| 601020704 | 2006 |                     | 0.000292826                  | 0.00732             | 9.58                     | 0                    |
|           |      | 1                   |                              |                     |                          | 1                    |
| 608020000 | 2007 | 8                   | 0.002342606                  | 0.05857             | 19.84                    |                      |
| 608020001 | 2007 | 4                   | 0.001171303                  | 0.02928             | 18.10                    | 1                    |
| 608020002 | 2007 | 6                   | 0.001756955                  | 0.04392             | 15.93                    | 1                    |
| 608020003 | 2007 | 7                   | 0.002049780                  | 0.05124             | 16.26                    | 1                    |
| 608020004 | 2007 | 5                   | 0.001464129                  | 0.03660             | 16.66                    | 1                    |
| 608020005 | 2007 | 10                  | 0.002928258                  | 0.07321             | 17.59                    | 1                    |
| 608020006 | 2007 | 122                 | 0.035724744                  | 0.89312             | 10.64                    | 10                   |
| 65357     | 2008 | 1                   | 0.000292826                  | 0.00732             | 3.99                     | 0                    |
| 68820     | 2008 | 2                   | 0.000585652                  | 0.01464             | 4.05                     | 0                    |
| 068642    | 2008 | 46                  | 0.013469985                  | 0.33675             | 4.02                     | 1                    |
| 068643    | 2008 | 93                  | 0.027232796                  | 0.68082             | 4.02                     | 3                    |
| 068644    | 2008 | 154                 | 0.045095168                  | 1.12738             | 4.03                     | 5                    |
| 068645    | 2008 | 257                 | 0.075256223                  | 1.88141             | 4.02                     | 8                    |
| 068646    | 2008 | 335                 | 0.098096633                  | 2.45242             | 4.03                     | 10                   |
| 068647    | 2008 | 314                 | 0.091947291                  | 2.29868             | 4.06                     | 9                    |
| 068648    | 2008 | 156                 | 0.045680820                  | 1.14202             | 4.02                     | 5                    |
| 068661    | 2008 | 16                  | 0.004685212                  | 0.11713             | 4.02                     | 0                    |
| 068662    | 2008 | 23                  | 0.006734993                  | 0.16837             | 4.03                     | 1                    |
| 68710     | 2009 | 603                 | 0.176573939                  | 4.41435             | 4.02                     | 18                   |
| 68711     | 2009 | 491                 | 0.143777452                  | 3.59444             | 4.01                     | 14                   |
| 68712     | 2009 | 335                 | 0.098096633                  | 2.45242             | 4.04                     | 10                   |
| 68713     | 2009 | 184                 | 0.053879941                  | 1.34700             | 4.17                     | 6                    |
| 68714     | 2009 | 125                 | 0.036603221                  | 0.91508             | 4.01                     | 4                    |
| 68715     | 2009 | 92                  | 0.026939971                  | 0.67350             | 4.04                     | 3                    |
| 68716     | 2009 | 25                  | 0.007320644                  | 0.18302             | 4.01                     | 1                    |
| Totals    |      | 3,415               | 1.0000                       | 25                  |                          | 111                  |

Table 4. Estimated contribution of hatchery origin Chinook salmon recovered at Iron Gate Hatchery during the 2011 spawning season.

|               | Release     | Brood      |          | Release  | Number    | Production | Expanded |
|---------------|-------------|------------|----------|----------|-----------|------------|----------|
| CWT           | Location    | Year       | Age      | Type     | Recovered | Multiplier | Estimate |
| Estimated con | tribution ( | of known ( | CWTs:    |          |           |            |          |
| 601020704     | IGH         | 2006       | 5        | Fy       | 1         | 9.58       | 10       |
| 608020000     | IGH         | 2007       | 4        | Ff       | 8         | 19.84      | 159      |
| 608020001     | IGH         | 2007       | 4        | Ff       | 4         | 18.10      | 72       |
| 608020002     | IGH         | 2007       | 4        | Ff       | 6         | 15.93      | 96       |
| 608020003     | IGH         | 2007       | 4        | Ff       | 7         | 16.26      | 114      |
| 608020004     | IGH         | 2007       | 4        | Ff       | 5         | 16.66      | 83       |
| 608020005     | IGH         | 2007       | 4        | Ff       | 10        | 17.59      | 176      |
| 608020006     | IGH         | 2007       | 4        | Fy       | 122       | 10.64      | 1,298    |
| 65357         | TRH         | 2008       | 3        | Ff       | 1         | 3.99       | 4        |
| 68820         | TRH         | 2008       | 3        | Fy       | 2         | 4.05       | 8        |
| 068642        | IGH         | 2008       | 3        | Ff       | 46        | 4.02       | 185      |
| 068643        | IGH         | 2008       | 3        | Ff       | 93        | 4.02       | 374      |
| 068644        | IGH         | 2008       | 3        | Ff       | 154       | 4.03       | 621      |
| 068645        | IGH         | 2008       | 3        | Ff       | 257       | 4.02       | 1,033    |
| 068646        | IGH         | 2008       | 3        | Ff       | 335       | 4.03       | 1,350    |
| 068647        | IGH         | 2008       | 3        | Ff       | 314       | 4.06       | 1,275    |
| 068648        | IGH         | 2008       | 3        | Fy       | 156       | 4.02       | 627      |
| 068661        | IGH         | 2008       | 3        | Fy       | 16        | 4.02       | 64       |
| 068662        | IGH         | 2008       | 3        | Fy       | 23        | 4.03       | 93       |
| 68710         | IGH         | 2009       | 2        | Ff       | 603       | 4.02       | 2,424    |
| 68711         | IGH         | 2009       | 2        | Ff       | 491       | 4.01       | 1,969    |
| 68712         | IGH         | 2009       | 2        | Ff       | 335       | 4.04       | 1,353    |
| 68713         | IGH         | 2009       | 2        | Ff       | 184       | 4.17       | 767      |
| 68714         | IGH         | 2009       | 2        | Ff       | 125       | 4.01       | 501      |
| 68715         | IGH         | 2009       | 2        | Ff       | 92        | 4.04       | 372      |
| 68716         | IGH         | 2009       | 2        | Fy       | 25        | 4.01       | 100      |
|               |             |            |          | Subtotal | 3415      |            | 15,128   |
|               |             |            |          |          |           |            |          |
| Estimated con | tribution ( | of unknow  | n CWTs   |          |           |            |          |
| 200000        |             |            |          |          | 20        |            |          |
| 400000        |             |            |          |          | 5         |            |          |
|               |             |            |          | Subtotal | 25        |            | 111      |
|               |             |            |          |          |           |            |          |
|               |             |            |          |          |           | •          | 4        |
|               |             | Total E    | stimated | I Hatche | ry Contr  | ibution =  | 15,239   |
|               |             |            |          |          |           |            |          |

Table 5. Age composition of the 2011 Chinook salmon run that entered Iron Gate Hatchery (IGH), as developed by the Klamath River Technical Advisory Team (KRTAT).

| Age 2 | Age 3 | Age 4 | Age 5  | Total Adults | Total Run |
|-------|-------|-------|--------|--------------|-----------|
| 9,549 | 6,212 | 2,276 | 1      | 8,490        | 18,039    |
| 52.9% | 34.4% | 12.6% | .0055% | 47.1%        |           |

#### Coho Salmon

Five hundred eighty-six (586) coho entered IGH during the fall 2011 season between October 10, 2011 and December 12, 2011. Of these, 522 (89.1%) had left maxillary (LM) clips, indicating they were of IGH origin, 61 (10.4%) were unmarked, one (.002%) had both a left and right maxillary clip, and 2 (.003%) had AD clips with no maxillary clips (indicating Oregon or Washington hatchery origin). These two AD fish did not contain coded wire tags. Male coho ranged in size from 38 to 80 cm. in fork length (Figure 4). Female coho ranged in size from 46 to 76 cm. in fork length (Figure 5). Based on the length frequency distribution of 382 male coho, grilse were estimated to be  $\leq$  55 cm fork length. Of the 586 coho salmon (male and female) sampled by the KRP, 132 (22.5%) were grilse.

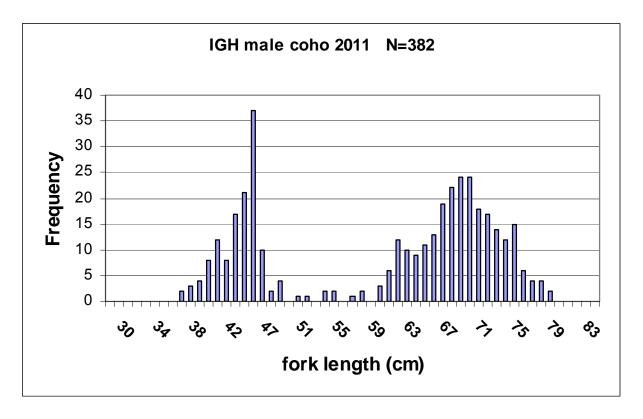



Figure 4. Length frequency distribution for random sample of male coho salmon recovered at Iron Gate Hatchery during the 2011 spawning season.

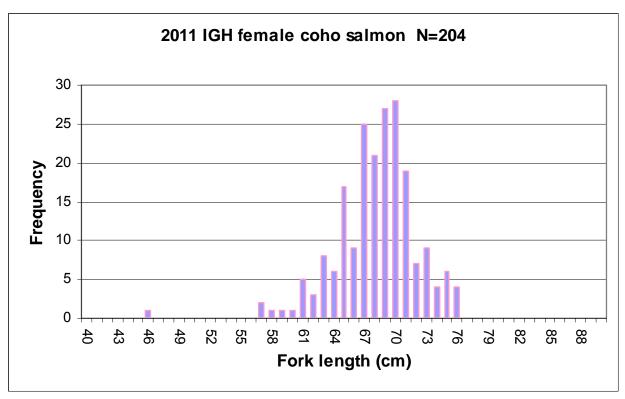



Figure 5. Length frequency distribution for random sample of female coho salmon recovered at Iron Gate Hatchery during the 2011 spawning season.

A total of 259 coho salmon which entered IGH were pit tagged and released back to the Klamath River., antenna arrays detected 17 of these coho entering the Shasta River at the Shasta River Fish Counting Facility (SRFCF, approximately 700 feet above the confluence with the Klamath River). Of the 17, one was also detected at Big Springs Creek (RM 32.9) four days after its release from IGH and later Parks Creek (RM 35) 21 days later. The other 16 fish were only detected at the SRFCF. The number of days between release from IGH and detection at the SRFCF ranged from 4 to 22 and averaged 11 days. Sixteen of the 17 coho detected in the Shasta River were left maxillary clipped, indicating IGH origin, and one was not marked. The fish that reached Parks Creek (Big Springs complex) was a left maxillary clipped fish and had the shortest travel time between release from IGH and first detection (4 days).

Sixty-eight coho salmon pit tagged and released from IGH were detected at the nearby Bogus Creek Fish Counting Facility, located approximately .3 miles from the mouth of Bogus Creek just below IGH. Bogus Creek, Shasta River and the Scott River (antenna located at Scott River Fish Counting Facility river mile 18) were the only locations where antenna arrays were installed and maintained by Yreka Fisheries staff, so it is unknown where else IGH released coho may have strayed. There were no detections of IGH released PIT tagged coho salmon at the Scott River Fish Counting Facility.

Thirty-two (12.4%) pit tagged coho re-entered IGH after their initial release.

#### DISCUSSION

#### **Chinook Salmon**

Since 1978, KRP has been monitoring the escapement of fall-run Chinook in the Klamath River basin, excluding the Trinity River. The Trinity River Project (TRP) has been monitoring salmon returns in the Trinity River basin during the same period, and the combined run size information generated from these two efforts is summarized in the CDFG "Mega Table" each year. Chinook run size data are compiled and reviewed by the KRTAT during their annual age composition meeting in late January or early February. During the age composition meeting, results of the scale analysis are integrated into run size data to estimate the age structure for each of the various stocks within the basin. Age-specific estimates of natural and hatchery in river escapement coupled with ocean harvest data allows for cohort reconstruction of Klamath River fall-run Chinook. Age-specific estimates of natural and hatchery in-river escapement and harvest are the foundation of model-based forecasting of next year's abundance in the ocean. (KRTAT 2012).

Klamath Basin fall Chinook ocean abundance forecasts are input by the KRTAT into the Klamath Ocean Harvest Model, which models ocean mortality and fishery impacts to allow for ocean fishery options and meet mandated in-river tribal and sport harvest sharing and in-river adult natural spawner escapement targets. Thus, the run size estimates that are compiled each year provide a critical source of data necessary for the effective management of fall Chinook each year.

The 2011 run (18,039) of Chinook salmon at IGH exceeds the 34-year average of 15,916 by 2,123 fish (Figure 6). In 2011 IGH Chinook comprised roughly 10% of the total (Klamath basin) in-river run (188,845) and 12% of the total spawner escapement (144,314) (Table 6).

The percentage of grilse returning to IGH in 2011 (52.9%) was the highest observed in 34 years of record keeping (Figure 7) and the return of grilse to nearby Bogus Creek (42%) was the third highest during that time period. Returns of two year old Chinook were unusually high throughout the basin (KRTAT 2012). Table 7 shows grilse and adult returns to Iron Gate Hatchery and Bogus Creek from 1978 to 2011. A low observed incidence of *Ceratomyxa shasta* (True et al., 2011), along with favorable flow and temperature conditions in the main stem Klamath River during spring and early summer, and favorable ocean conditions were likely contributors to the above normal survival of age two fall Chinook (brood year 2009).

The Chinook salmon releases from IGH include both smolt and yearling releases. The current production goals include releases of 5,100,000 Chinook smolts in May and June and 900,000 yearlings the following November. In 2011, 4,021,411 Chinook smolts and 935,000 yearling Chinook were released from IGH. 2011 was the third year that a total count of Chinook smolts in the raceways was made by the automated tagging trailer, which accurately counts all fish that are pumped into the trailer and diverts 25% for clipping and tagging. During the first three years of automated tagging trailer operation

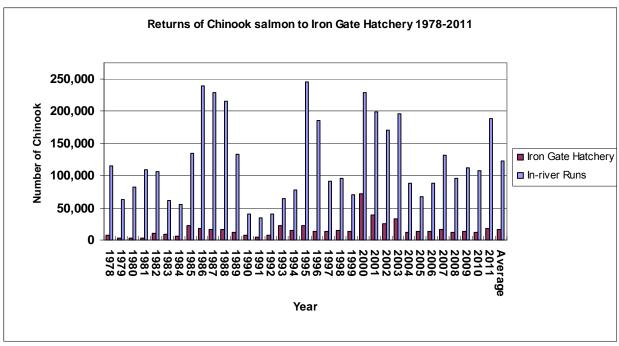



Figure 6. Chinook salmon escapement to Iron Gate Hatchery and in-river runs of Chinook salmon in the Klamath River, 1978 to 2011.

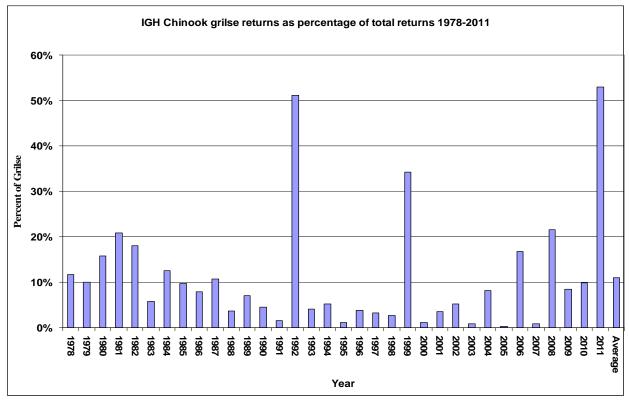



Figure 7. Grilse returns as a percentage of total Chinook salmon returns to Iron Gate Hatchery, 1978-2011.

the estimated number of ponded Chinook has been compared to the number of inventoried Chinook through the tagging trailer. In all three years the ponded number of Chinook was overestimated by approximately 15 to 20 percent. If overestimation of the ponded number of fish occurred at the same rate as observed in the last three years in years prior to the implementation of the tagging trailer, the release numbers have been over- estimated by approximately 15 to 20 percent. One outcome of overestimating the untagged portion of a release is that the production multipliers are higher then they should be and as a result for every year in which this occurred hatchery contributions have been overestimated. It is unknown as to the extent to which this problem has occurred in previous years.

Because of delays in tagging caused by treatment of fish for coldwater disease, IGH obtained approval from the CDFG Northern Regional Manager to release the fingerling groups after the target release period (mid-May to mid-June), and before the targeted size at release, defined as 90/lb. Fingerling groups were released on June 23, 2011. River temperatures ranged between 60 and 64 degrees F (15.5 -17.9 degrees C) during the release week, and flows were 2200 CFS below Iron Gate Dam. Yearling groups were released between November 7 and November 10, 2011.

One of the recommendations of the Joint Hatchery Review Committee (2001) was for IGH to produce more yearlings and less smolts, to reduce hatchery-origin/natural-origin interactions during the typically low flow and poor water quality months of June and July. Flows during the mid-October to mid-November yearling release period are typically higher, and water quality better, resulting in less competition for food and space during out-migration. (CDFG and NMFS 2001). Table 8 shows a comparison of return rates between CWT Chinook released as smolts and as yearlings.

At this time there are physical and funding constraints that limit the Department's ability to implement an increased rearing program for yearling Chinook salmon. In addition, the 2009 Hatchery Scientific Review Group (HSRG 2012) recommended excluding yearling-released Chinook from the spawning matrix due to domestication concerns. One of the group's recommendations is the application of a secondary mark to these fish to enable differentiation from smolt-released fish upon their return as adults.

Table 6. Historic Chinook salmon totals (includes adults and grilse) for the Klamath Basin, Iron Gate Hatchery and Bogus Creek, 1978-2011.

| Vaar    | In-River Run (IRR) | Spawner E | scapement (SE) | Iron G | ate Hatch | ery  | Bogus Creek |       |      |
|---------|--------------------|-----------|----------------|--------|-----------|------|-------------|-------|------|
| Year    | Totals             | Totals    | % IRR          | Totals | % IRR     | % SE | Totals      | % IRR | % SE |
| 1978    | 115,728            | 90,135    | 77.9%          | 7,870  | 7%        | 9%   | 5,579       | 5%    | 6%   |
| 1979    | 62,970             | 42,255    | 67.1%          | 2,558  | 4%        | 6%   | 5,938       | 9%    | 14%  |
| 1980    | 82,413             | 57,683    | 70.0%          | 2,863  | 3%        | 5%   | 5,070       | 6%    | 9%   |
| 1981    | 108,422            | 56,333    | 52.0%          | 2,595  | 2%        | 5%   | 3,642       | 3%    | 7%   |
| 1982    | 106,020            | 67,076    | 63.3%          | 10,186 | 10%       | 15%  | 7,143       | 7%    | 11%  |
| 1983    | 61,392             | 47,960    | 78.1%          | 8,885  | 14%       | 19%  | 3,048       | 5%    | 6%   |
| 1984    | 55,542             | 30,375    | 54.7%          | 6,094  | 11%       | 20%  | 3,504       | 6%    | 12%  |
| 1985    | 133,827            | 104,487   | 78.1%          | 22,110 | 17%       | 21%  | 4,647       | 4%    | 4%   |
| 1986    | 239,559            | 180,263   | 75.2%          | 18,557 | 8%        | 10%  | 7,308       | 3%    | 4%   |
| 1987    | 228,182            | 143,890   | 63.1%          | 17,014 | 7%        | 12%  | 10,956      | 5%    | 8%   |
| 1988    | 215,696            | 130,749   | 60.6%          | 16,715 | 8%        | 13%  | 16,440      | 8%    | 13%  |
| 1989    | 133,440            | 72,438    | 54.3%          | 11,690 | 9%        | 16%  | 2,662       | 2%    | 4%   |
| 1990    | 40,274             | 25,705    | 63.8%          | 7,040  | 17%       | 27%  | 785         | 2%    | 3%   |
| 1991    | 34,425             | 19,121    | 55.5%          | 4,067  | 12%       | 21%  | 1,281       | 4%    | 7%   |
| 1992    | 40,391             | 28,479    | 70.5%          | 7,318  | 18%       | 26%  | 1,154       | 3%    | 4%   |
| 1993    | 64,810             | 48,945    | 75.5%          | 21,711 | 33%       | 44%  | 3,716       | 6%    | 8%   |
| 1994    | 78,354             | 60,850    | 77.7%          | 14,566 | 19%       | 24%  | 8,260       | 11%   | 14%  |
| 1995    | 245,542            | 217,312   | 88.5%          | 22,940 | 9%        | 11%  | 46,432      | 19%   | 21%  |
| 1996    | 185,305            | 108,325   | 58.5%          | 14,165 | 8%        | 13%  | 10,797      | 6%    | 10%  |
| 1997    | 91,729             | 70,303    | 76.6%          | 13,727 | 15%       | 20%  | 10,030      | 11%   | 14%  |
| 1998    | 95,286             | 75,157    | 78.9%          | 15,326 | 16%       | 20%  | 6,835       | 7%    | 9%   |
| 1999    | 70,296             | 50,088    | 71.3%          | 14,120 | 20%       | 28%  | 6,165       | 9%    | 12%  |
| 2000    | 228,323            | 188,642   | 82.6%          | 72,474 | 32%       | 38%  | 35,051      | 15%   | 19%  |
| 2001    | 198,676            | 142,324   | 71.6%          | 38,568 | 19%       | 27%  | 12,575      | 6%    | 9%   |
| 2002    | 170,014            | 99,016    | 58.2%          | 24,961 | 15%       | 25%  | 17,834      | 11%   | 18%  |
| 2003    | 195,791            | 152,390   | 77.8%          | 32,260 | 16%       | 21%  | 15,610      | 8%    | 10%  |
| 2004    | 88,589             | 53,478    | 60.4%          | 11,519 | 13%       | 22%  | 3,788       | 4%    | 7%   |
| 2005    | 67,579             | 56,188    | 83.1%          | 13,997 | 21%       | 25%  | 5,397       | 8%    | 10%  |
| 2006    | 88,258             | 70,986    | 80.4%          | 13,990 | 16%       | 20%  | 4,132       | 5%    | 6%   |
| 2007    | 132,167            | 95,998    | 72.6%          | 17,149 | 13%       | 18%  | 4,741       | 4%    | 5%   |
| 2008    | 95,619             | 64,487    | 67.4%          | 11,231 | 12%       | 17%  | 4,566       | 5%    | 7%   |
| 2009    | 112,685            | 73,688    | 65.4%          | 13,492 | 12%       | 18%  | 5,926       | 5%    | 8%   |
| 2010    | 107,500            | 69,584    | 64.7%          | 11,347 | 11%       | 16%  | 4,566       | 4%    | 7%   |
| 2011    | 188,845            | 144,314   | 76.4%          | 18,039 | 10%       | 12%  | 5,517       | 5%    | 6%   |
| Average | 122,460            | 86,442    | 69.8%          | 15,916 | 13%       | 19%  | 8,562       | 6%    | 9%   |
| MAX     | 245,542            | 217,312   | 89%            | 72,474 | 34%       | 44%  | 46,432      | 19%   | 21%  |
| MIN     | 34,425             | 19,121    | 52%            | 2,558  | 2%        | 5%   | 785         | 2%    | 3%   |
| ST DEV  | 63,540             | 48,788    | 0.1            | 12,752 | 0.1       | 0.1  | 9,277       | 0.0   | 0.0  |

1/ For the 1995 season the gates at IGH were closed at times, therefore a significant portion of the IGH returns were diverted to Bogus Creek.

Table 7. Adult and grilse components of Chinook salmon returns to Iron Gate Hatchery and Bogus Creek, 1978-2011.

|         |        | Iron Gate | Hatchery |          |        | Bogus  | Creek  |          |
|---------|--------|-----------|----------|----------|--------|--------|--------|----------|
| Year    | Grilse | Adults    | Total    | % Grilse | Grilse | Adults | Total  | % Grilse |
| 1978    | 925    | 6,945     | 7,870    | 11.8%    | 651    | 4,928  | 5,579  | 11.7%    |
| 1979    | 257    | 2,301     | 2,558    | 10.0%    | 494    | 5,444  | 5,938  | 8.3%     |
| 1980    | 451    | 2,412     | 2,863    | 15.8%    | 1,749  | 3,321  | 5,070  | 34.5%    |
| 1981    | 540    | 2,055     | 2,595    | 20.8%    | 912    | 2,730  | 3,642  | 25.0%    |
| 1982    | 1,833  | 8,353     | 10,186   | 18.0%    | 2,325  | 4,818  | 7,143  | 32.5%    |
| 1983    | 541    | 8,371     | 8,912    | 6.1%     | 335    | 2,713  | 3,048  | 11.0%    |
| 1984    | 764    | 5,330     | 6,094    | 12.5%    | 465    | 3,039  | 3,504  | 13.3%    |
| 1985    | 2,159  | 19,951    | 22,110   | 9.8%     | 1,156  | 3,491  | 4,647  | 24.9%    |
| 1986    | 1,461  | 17,096    | 18,557   | 7.9%     | 1,184  | 6,124  | 7,308  | 16.2%    |
| 1987    | 1,825  | 15,189    | 17,014   | 10.7%    | 1,208  | 9,748  | 10,956 | 11.0%    |
| 1988    | 609    | 16,106    | 16,715   | 3.6%     | 225    | 16,215 | 16,440 | 1.4%     |
| 1989    | 831    | 10,589    | 11,690   | 7.1%     | 444    | 2,218  | 2,662  | 16.7%    |
| 1990    | 321    | 6,719     | 7,040    | 4.6%     | 53     | 732    | 785    | 6.8%     |
| 1991    | 65     | 4,002     | 4,067    | 1.6%     | 20     | 1,261  | 1,281  | 1.6%     |
| 1992    | 3,737  | 3,581     | 7,318    | 51.1%    | 556    | 598    | 1,154  | 48.2%    |
| 1993    | 883    | 20,828    | 21,711   | 4.1%     | 431    | 3,285  | 3,716  | 11.6%    |
| 1994    | 758    | 13,808    | 14,566   | 5.2%     | 443    | 7,817  | 8,260  | 5.4%     |
| 1995    | 259    | 22,681    | 22,940   | 1.1%     | 1,207  | 45,225 | 46,432 | 2.6%     |
| 1996    | 543    | 13,622    | 14,165   | 3.8%     | 377    | 10,420 | 10,797 | 3.5%     |
| 1997    | 452    | 13,275    | 13,727   | 3.3%     | 221    | 9,809  | 10,030 | 2.2%     |
| 1998    | 403    | 14,923    | 15,326   | 2.6%     | 205    | 6,630  | 6,835  | 3.0%     |
| 1999    | 4,830  | 9,290     | 14,120   | 34.2%    | 2,628  | 3,537  | 6,165  | 42.6%    |
| 2000    | 839    | 71,635    | 72,474   | 1.2%     | 373    | 34,678 | 35,051 | 1.1%     |
| 2001    | 1,364  | 37,204    | 38,568   | 3.5%     | 648    | 11,927 | 12,575 | 5.2%     |
| 2002    | 1,294  | 23,667    | 24,961   | 5.2%     | 304    | 17,530 | 17,834 | 1.7%     |
| 2003    | 290    | 31,970    | 32,260   | 0.9%     | 188    | 15,422 | 15,610 | 1.2%     |
| 2004    | 937    | 10,582    | 11,519   | 8.1%     | 295    | 3,493  | 3,788  | 7.8%     |
| 2005    | 42     | 13,955    | 13,997   | 0.3%     | 58     | 5,339  | 5,397  | 1.1%     |
| 2006    | 2,386  | 11,604    | 13,990   | 17.1%    | 764    | 3,368  | 4,132  | 18.5%    |
| 2007    | 154    | 16,995    | 17,145   | 0.9%     | 95     | 4,646  | 4,741  | 2.0%     |
| 2008    | 2,414  | 8,817     | 11,231   | 21.5%    | 1,565  | 3,001  | 4,566  | 34%      |
| 2009    | 1,132  | 12,258    | 13,492   | 8.4%     | 471    | 5,455  | 5,926  | 8%       |
| 2010    | 1,071  | 10,276    | 11,347   | 9.4%     | 292    | 3,179  | 3,471  | 8%       |
| 2011    | 9,549  | 8,490     | 18,039   | 52.9%    | 2,343  | 3,174  | 5,517  | 42%      |
| Average | 1,351  | 14,555    | 15,917   | 11.0%    | 726    | 7803   | 8529   | 13.7%    |

Table 8. Return rates of IGH smolt and yearling CWT releases for brood years 1990-1996, 1999, 2000 and 2002-2006.

| Dwood        | IGH      | Smolt Relea | ases     | IGH '    | Yearling Rele | eases    | Ratio of       |
|--------------|----------|-------------|----------|----------|---------------|----------|----------------|
| Brood        | # CWTs   | # CWTs      |          | # CWTs   | # CWTs        |          | yearling/smolt |
| Year         | Released | Returned    | % Return | Released | Returned      | % Return | return rates   |
| 1990         | 188,595  | 713         | 0.378%   | 95,880   | 740           | 0.772%   | 2.04           |
| 1991         | 191,200  | 96          | 0.050%   | 90,982   | 167           | 0.184%   | 3.66           |
| 1992         | 185,464  | 1015        | 0.547%   | 74,024   | 269           | 0.363%   | 0.66           |
| 1993         | 188,562  | 40          | 0.021%   | 98,099   | 196           | 0.200%   | 9.42           |
| 1994         | 194,644  | 94          | 0.048%   | 86,564   | 453           | 0.523%   | 10.84          |
| 1995         | 191,799  | 85          | 0.044%   | 90,172   | 954           | 1.058%   | 23.87          |
| 1996         | 196,648  | 162         | 0.082%   | 95,396   | 581           | 0.609%   | 7.39           |
| 1999         | 182,131  | 686         | 0.377%   | 91,220   | 514           | 0.563%   | 1.50           |
| 2000         | 187,417  | 277         | 0.148%   | 100,702  | 707           | 0.702%   | 4.75           |
| 2002         | 210,114  | 367         | 0.175%   | 109,711  | 295           | 0.269%   | 1.54           |
| 2003         | 261,888  | 70          | 0.027%   | 48,592   | 60            | 0.123%   | 4.62           |
| 2004         | 205,950  | 691         | 0.336%   | 98,752   | 215           | 0.218%   | 0.65           |
| 2005         | 209,754  | 194         | 0.092%   | 103,157  | 445           | 0.431%   | 4.66           |
| 2006         | 309,671  | 224         | 0.072%   | 103,361  | 230           | 0.223%   | 3.08           |
| 2007         | 307,204  | 340         | 0.111%   | 103,876  | 300           | 0.289%   | 2.61           |
| <b>AVERA</b> | GE       |             | 0.167%   |          |               | 0.435%   | 5.42           |

#### Coho Salmon

In recent years, returns of coho salmon to IGH (Figure 8) have been more stable than returns of naturally produced salmon throughout the basin (Chesney, D. et al 2009; Knechtle, M. et al 2009). There is increasing concern among fishery managers that the conservation of remaining upper Klamath River coho genetic resources is necessary to prevent short-term risk of extinction. Because of the relatively stable returns of coho to IGH, there are proposals in place to use IGH coho in excess of mitigation needs to supplement escapement to areas of severely depressed runs, such as the Shasta River.

The 2009 Draft Hatchery Genetic Management Plan (HGMP) was developed for IGH as part of the CDFG's application for an ESA Section 10(a)(1)(A) permit for hatchery operation. The HGMP is intended to guide hatchery practices toward the conservation and recovery of listed species, specifically, the upper Klamath River coho population unit. Changes to the management of IGH coho, including the use of NOAA's spawning matrix and the addition of bird exclusion netting in the outdoor rearing raceways, were recommendations of the draft HGMP and were implemented in 2010 (CDFG, 2011). The draft HGMP also recommends increasing the proportion of natural origin broodstock (pNOB) and the proportion of jacks included in the broodstock (pJacks) (Table 9).

Table 9. Male, female and jack returns, number of females spawned, proportion of natural origin broodstock and jacks used in spawning, egg take, fecundity and yearlings released by brood year at IGH from 1993-2011.

|         |       |         |       | Females | Natural Origin |      |        |         |           | Yearlings |
|---------|-------|---------|-------|---------|----------------|------|--------|---------|-----------|-----------|
| Year    | Males | Females | Jacks | spawned | Broodstock     | pNOB | pJacks | # Eggs  | Fecundity | released  |
| 1993    | 361   | 314     | 29    | 219     | ?              | ~15  | ~1     | 503,326 | 2,298     | 79,506    |
| 1994    | 100   | 72      | 97    | 57      | ?              | ~15  | ~1     | 141,397 | 2,481     | 74,250    |
| 1995    | 708   | 793     | 29    | 294     | ?              | ~15  | ~1     | 782,170 | 2,660     | 81,489    |
| 1996    | 1,715 | 1,831   | 551   | 200     | ?              | ~15  | ~1     | 547,255 | 2,736     | 79,607    |
| 1997    | 825   | 1,047   | 302   | 126     | 16             | 6.3  | ~1     | 304,728 | 2,418     | 75,156    |
| 1998    | 243   | 268     | 158   | 122     | 75             | 30.7 | ~1     | 298,357 | 2,446     | 77,147    |
| 1999    | 90    | 61      | 18    | 35      | 5              | 7.1  | ~1     | 86,519  | 2,472     | 46,250    |
| 2000    | 295   | 428     | 631   | 95      | 52             | 27.4 | ~1     | 270,151 | 2,844     | 67,933    |
| 2001    | 972   | 1,494   | 107   | 126     | 22             | 8.7  | ~1     | 404,370 | 3,209     | 74,271    |
| 2002    | 566   | 627     | 108   | 187     | 68             | 18.2 | ~1     | 609,193 | 3,258     | 109,374   |
| 2003    | 609   | 708     | 241   | 197     | 172            | 43.7 | ~1     | 502,048 | 2,548     | 74,716    |
| 2004    | 630   | 865     | 239   | 276     | 10             | 4.0  | ~1     | 799,623 | 2,897     | 89,482    |
| 2005    | 596   | 799     | 30    | 103     | 10             | 4.9  | ~1     | 295,101 | 2,865     | 118,487   |
| 2006    | 112   | 151     | 69    | 85      | 10             | 5.9  | ~1     | 236,406 | 2,781     | 53,950    |
| 2007    | 300   | 325     | 154   | 124     | 10             | 4.0  | ~1     | 316,155 | 2,550     | 117,832   |
| 2008    | 508   | 770     | 24    | 148     | 9              | 3.0  | ~1     | 455,480 | 3,078     | 121,000   |
| 2009    | 21    | 25      | 18    | 20      | 6              | 15.0 | ~1     | 53,435  | 2,672     | 22,236    |
| 2010    | 193   | 235     | 57    | 91      | 22             | 12.1 | 6.0    | 259,490 | 2,792     | 155,840   |
| 2011    | 248   | 204     | 134   | 57      | 21             | 25.2 | 11.7   | 151,241 | 2,701     | NA        |
| Average | 479   | 580     | 158   | 135     | 34             | 14   | 9      | 369,287 | 2,721     | 84,363    |

Figure 9 shows the relatedness coefficient (Rxy) of pairs of coho salmon spawned (yellow bars) at IGH during the 2011 season with the use of the NOAA spawning matrix. This was the second season for which the matrix was used. The maroon bars represent the optimal pairings of males and females that could be achieved if the most unrelated male was spawned with its most unrelated female for each mating. In the absence of the spawning matrix and if pairs were selected purely at random the resulting Rxy values are represented by blue bars (Garza et al., 2012) Highly inbred pairings result in Rxy values > 0.10 and as a result of utilizing the spawning matrix 27 inbred matings were prevented in 2011. With the combined efforts of NOAA, CDFG and PacifiCorps, future coho spawning operations will likely continue to improve the genetic fitness of IGH coho.

Beginning in 1997 all coho that entered IGH, whose origin was either IGH or TRH, would have been maxillary clipped prior to release. There are a small number of coho that may not have been clipped as a result of clipping error. As a result, the number of LM clips observed at IGH during recovery efforts slightly underestimates the actual number of hatchery origin coho present (Table 10).

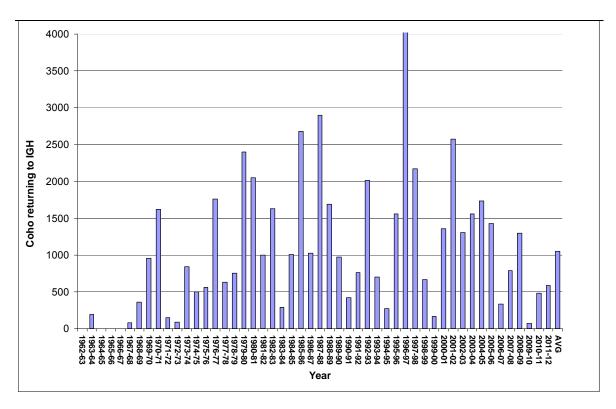



Figure 8. Coho salmon returns at Iron Gate Hatchery from 1962 to 2012

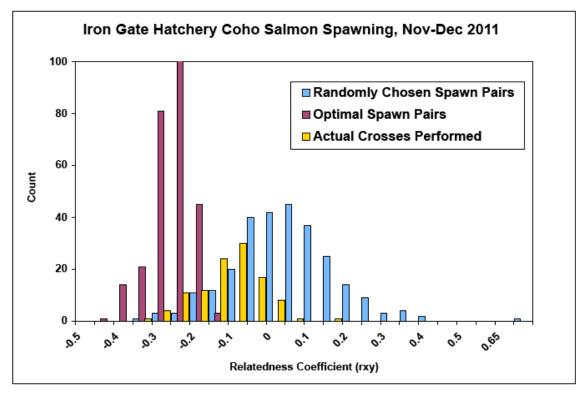



Figure 9. Observed relatedness coefficients of actual spawned pairs, optimally spawned pairs and randomly chosen pairs for IGH coho during the 2011 season (Figure provided by NOAA Southwest Fisheries Science Center Salmonid Genetic Laboratory).

Table 10. Summary of marked and unmarked coho salmon that entered IGH 1997-2011

| 1997/1998                                      |                                     |                                    |          | 1998/1999     |           |                                       |                                        | 1999/2000                       |             |             |            |
|------------------------------------------------|-------------------------------------|------------------------------------|----------|---------------|-----------|---------------------------------------|----------------------------------------|---------------------------------|-------------|-------------|------------|
| FIN CLIPS AD                                   | IIITS GE                            | RILSE                              | Total    | FIN CLIPS     | ADULTS    | GRILSE                                | Total                                  | FIN CLIPS AI                    | OH TS       | GRILSE      | Total      |
| Unmarked                                       | 121                                 | 44                                 | 165      | Unmarked      | 207       | 82                                    | 289                                    | Unmarked                        | 12          | 3           | 15         |
| LM                                             | 1,717                               | 253                                | 1,970    | LM            | 303       | 75                                    | 378                                    | LM                              | 138         | 15          | 153        |
| RM                                             | 5                                   | 233                                | 5        | RM            | 303       | 75                                    | 0                                      | RM                              | 130         | 15          | (          |
| AD                                             | 24                                  | 4                                  | 28       | AD            | 1         | 1                                     | 2                                      | AD                              | 1           |             | 1          |
| ADLM                                           | 5                                   | 1                                  | 6        | ADLM          | 1         | 1                                     | 0                                      | ADLM                            | 1           |             | 0          |
| ADRM                                           | 3                                   | 1                                  | 0        | ADRM          |           |                                       | 0                                      | ADRM                            |             |             | 0          |
|                                                | 1.751                               | 250                                |          |               | 204       | 76                                    |                                        |                                 | 120         | 1.5         |            |
| Total Clippe                                   | 1,751                               | 258                                | 2,009    | Total Clipped | 304       | 76                                    | 380                                    | Total Clippe                    | 139         | 15          | 154        |
| Total Returr                                   | 1,872                               | 302                                | 2,174    | Total Returns | 511       | 158                                   | 669                                    | Total Return                    | 151         | 18          | 169        |
| 2000/2001                                      |                                     |                                    |          | 2001/2002     |           |                                       |                                        | 2002/2003                       |             |             |            |
| FIN CLIPS AD                                   | MILTS GE                            | RILSE                              | Total    | FIN CLIPS     | ADULTS    | CDILSE                                | Total                                  | FIN CLIPS AI                    | TI TC       | GRILSE      | Total      |
| Unmarked                                       | 198                                 | 64                                 | 262      | Unmarked      | 217       | 29                                    | 246                                    | Unmarked                        | 216         | OKILSE<br>9 | 225        |
| LM                                             | 500                                 | 567                                | 1,067    | LM            | 2,054     | 76                                    | 2,130                                  | LM                              | 916         | 90          | 1,006      |
|                                                |                                     | 307                                | ,        |               |           | 2                                     |                                        |                                 |             |             |            |
| RM                                             | 4                                   |                                    | 4        | RM            | 136       | 2                                     | 138                                    | RM                              | 25          | 0           | 25         |
| AD                                             | 13                                  |                                    | 13       | AD            | 51        |                                       | 51                                     | AD                              | 31          | 7           | 38         |
| ADLM                                           | 8                                   |                                    | 8        | ADLM          | 7         |                                       | 7                                      | ADLM                            | 5           | 2           | 7          |
| ADRM                                           |                                     |                                    | 0        | ADRM          | 1         |                                       | 1                                      | ADRM                            |             |             | 0          |
| Total Clippe                                   | 525                                 | 567                                | 1,092    | Total Clipped | 2,249     | 78                                    | 2,327                                  | Total Clippe                    | 977         | 99          | 1,076      |
| Total Returr                                   | 723                                 | 631                                | 1,354    | Total Returns | 2,466     | 107                                   | 2,573                                  | Total Returr                    | 1,193       | 108         | 1,301      |
| 2002/2004                                      |                                     |                                    |          | 2004/2005     |           |                                       |                                        | 200=/200                        |             |             |            |
| 2003/2004                                      | AH TEC CT                           | TI CE                              | T-4-1    | 2004/2005     | A DATE TO | CDII CE                               | T. 4.1                                 | 2005/2006                       | NII TO      | CDH CE      | m · · ·    |
| FIN CLIPS AD                                   | OULTS GE                            | RILSE                              | Total    | FIN CLIPS     |           | GRILSE                                | Total                                  | FIN CLIPS AI                    | DULTS       | GRILSE      | Total      |
| Unmarked                                       | 575                                 | 14                                 | 589      | Unmarked      | 399       | 25                                    | 424*1                                  | Unmarked                        | 138         | 2           | 140        |
| LM                                             | 620                                 | 218                                | 838      | LM            | 990       | 213                                   | 1,203                                  | LM                              | 1,254       | 28          | 1,282      |
| RM                                             | 66                                  | 3                                  | 69       | RM            | 31        | 1                                     | 32                                     | RM                              | 2           | 0           | 2          |
| AD                                             | 52                                  | 6                                  | 58       | AD            | 69        | 0                                     | 69                                     | AD                              | 1           | 0           | 1          |
| ADLM                                           | 2                                   | 0                                  | 2        | ADLM          | 0         | 0                                     | 0                                      | ADLM                            | 0           | 0           | 0          |
| ADRM                                           | 2                                   | 0                                  | 2        | ADRM          | 1         | 0                                     | 1                                      | ADRM                            | 0           | 0           | 0          |
| Total Clippe                                   | 742                                 | 227                                | 969      | Other         | 5         | 0                                     | 5                                      | Other                           | 0           | 0           | 0          |
| Total Return                                   | 1,317                               | 241                                | 1,558    | Total Clipped | 1,096     | 214                                   | 1,310                                  | Total Clippe                    | 1,257       | 28          | 1.285      |
| Total Retail                                   | 1,517                               | 2-11                               | 1,000    | Total Returns | 1,495     | 239                                   | 1,734                                  | Total Return                    | 1,395       | 30          | 1,425      |
|                                                |                                     |                                    |          | Total Retains | 1,475     | 237                                   | 1,754                                  | Total Retail                    | 1,373       | 50          | 1,420      |
| 2006/2007                                      |                                     |                                    |          | 2007/2008     |           |                                       |                                        | 2008/2009                       |             |             |            |
| FIN CLIPS AD                                   | ULTS G                              | RILSE                              | Total    | FIN CLIPS     | ADULTS    | GRILSE                                | Total                                  | FIN CLIPS AI                    | DULTS       | GRILSE      | Total      |
| Unmarked                                       | 72                                  | 8                                  | 80       | Unmarked      | 135       | 2                                     | 137                                    | Unmarked                        | 23          | 1           | 24         |
| LM                                             | 176                                 | 27                                 | 203      | LM            | 480       | 163                                   | 643                                    | LM                              | 1224        | 44          | 1268       |
| RM                                             | 1                                   | 1                                  | 2        | RM            | 6         | 0                                     | 6                                      | RM                              | 0           | 2           | 2          |
| AD                                             | 16                                  | 0                                  | 16       | AD            | 2         | 0                                     | 2                                      | AD                              | 0           | 0           | 0          |
| ADLM                                           | 0                                   | 0                                  | 0        | ADLM          | 1         | 0                                     | 1                                      | ADLM                            | 0           | 0           | 0          |
| ADRM                                           | 0                                   | 0                                  | 0        | ADRM          | 0         | 0                                     | 0                                      | ADRM                            | 0           | 0           | 0          |
| ADKW                                           | U                                   | U                                  | U        | ADKW          | U         | U                                     | U                                      | LMRM                            | 2           | 0           | 2          |
|                                                |                                     |                                    |          |               |           |                                       |                                        | LIVIKIVI                        | 2           | U           | 2          |
| Total Clippe                                   | 193                                 | 28                                 | 221      | Total Clipped | 489       | 163                                   | 652                                    | Total Clippe                    | 1226        | 46          | 1272       |
| Total Return                                   | 265                                 | 36                                 | 301      | Total Returns | 624       | 165                                   | 789                                    | Total Return                    | 1249        | 47          | 1296       |
| Total Retur                                    | 203                                 | 30                                 | 301      | Total Returns | 024       | 103                                   | 102                                    | Total Return                    | 124)        | 47          | 1270       |
|                                                |                                     |                                    |          |               |           |                                       |                                        |                                 |             |             |            |
| 2009/2010                                      |                                     |                                    |          | 2010/2011     |           |                                       |                                        | 2011/2012                       |             |             |            |
| FIN CLIPS AD                                   | OULTS G                             | RILSE                              | Total    | FIN CLIPS     | ADULTS    | GRILSE                                | Total                                  | FIN CLIPS AI                    | DULTS       | GRILSE      | Total      |
| Unmarked                                       | 11                                  | 5                                  | 16       | Unmarked      | 84        | 3                                     | 87                                     | Unmarked                        | 61          | 0           | 61         |
| LM                                             | 24                                  | 17                                 | 41       | LM            | 344       | 53                                    | 397                                    | LM                              | 386         | 136         | 522        |
| RM                                             | 11                                  | 2                                  | 13       | RM            | 0         | 1                                     | 1                                      | LM/RM                           | 1           | 0           | 1          |
|                                                |                                     |                                    |          |               |           |                                       |                                        |                                 |             |             | 1          |
| ADIM                                           | 0                                   | 0                                  | 0        | AD ADIM       | 0         | 0                                     | 0                                      | ADIM                            | 2           | 0           | 2          |
|                                                | 0                                   | 0                                  | 0        | ADLM          | 0         | 0                                     | 0                                      | ADLM                            | 0           | 0           | 0          |
| ADLM                                           | 0                                   | 0                                  | 0        | ADRM          | 0         | 0                                     | 0                                      | ADRM                            | 0           | 0           | 0          |
| ADRM                                           |                                     |                                    |          |               |           |                                       |                                        |                                 |             |             |            |
|                                                |                                     |                                    | C.4      | Total Clipped | 344       | 54                                    | 398                                    | Total Clippe                    | 389         | 136         | 525        |
| ADRM                                           | 25                                  | 10                                 |          | rotai Ciipped |           | 57<br>57                              | 485                                    | Total Return                    |             |             | 525<br>586 |
| ADRM<br>Total Clippe                           | 35<br>46                            | 19<br>24                           | 54<br>70 |               | 179       |                                       |                                        |                                 |             |             |            |
| ADRM                                           | 35<br>46                            | 19<br>24                           | 70       | Total Returns | 428       | 31                                    | 405                                    | Total Retuil                    | 450         | 136         | 200        |
| ADRM<br>Total Clippe                           |                                     |                                    |          |               | 428       |                                       |                                        |                                 | 450         | 130         | 500        |
| ADRM<br>Total Clippe                           |                                     |                                    |          |               | 428       | Avera                                 | age 1997-2011                          | l                               | 450         | 130         | 500        |
| ADRM<br>Total Clippe                           |                                     |                                    |          |               | 428       | Avera<br>Clipped                      | age 1997-2011<br>Total % C             | l<br>lipped                     | 450         | 130         | 200        |
| ADRM Total Clippe Total Returr                 | 46                                  | 24                                 | 70       |               | 428       | Avera                                 | age 1997-2011<br>Total % C             | l                               | 450         | 130         | 200        |
| ADRM<br>Total Clippe                           | 46                                  | 24                                 | 70       |               | 428       | Avera<br>Clipped                      | age 1997-2011<br>Total % C             | l<br>lipped                     | 450         | 130         | 300        |
| ADRM Total Clippe Total Returr                 | 46<br>Hatchery (lei                 | 24<br>Ît maxillary                 | 70 clip) |               |           | Avera<br>Clipped<br>915               | age 1997-2011<br>Total % C<br>1,099 81 | l<br>lipped                     |             |             | 300        |
| ADRM Total Clippe Total Returr  LM=Iron Gate I | 46<br>Hatchery (lei<br>ver Hatchery | 24<br>it maxillary<br>/ (right max | 70 clip) |               |           | Avera<br>Clipped<br>915<br>ADLM = Ori | age 1997-2011 Total % C 1,099 81       | l<br>lipped<br><mark>.7%</mark> | r injury ca | used        | 300        |

#### **ACKNOWLEDGMENTS**

The KRP would like to thank PacifiCorps, the staff of Iron Gate Hatchery, Barbara Hagedorn, Amy Debrick and Corinna Gulbranson for their assistance and cooperation during the 2011 sampling season, and Libby Gilbert and Dr. Carlos Garza of NOAA for their real-time analysis of coho broodstock genetic samples.

#### REFERENCES

- California Department of Fish and Game, National Marine Fisheries Service Southwest Region Joint Hatchery Review Committee. 2001. Final Report on Anadromous Salmonid Fish Hatcheries in California. Review Draft June 27, 2001. 79pp.
- California Department of Fish and Game, Pacific Power and Light Company. 1996. Iron Gate Hatchery Production Goals and Constraints. 3pp.
- California Department of Fish and Game, 2011. DRAFT Hatchery and Genetic Management Plan for Iron Gate Hatchery. Prepared for National Oceanic and Atmospheric Administration, National Marine Fisheries Service.
- California Hatchery Scientific Review Group, 2012. California Hatchery Review: Statewide Report. 100 pp.
- Chesney, D. Knechtle, M., 2009. Shasta River Chinook and Coho Salmon Observations in 2009-2010 Siskiyou County, Ca. California Department of Fish and Game Annual Report. 28 pp.
- Garza, John Carlos, Molecular Ecology & Genetic Analysis Team 2012 Population Genetic Structure of Coho Salmon in the Klamath River.

  Southwest Fisheries Science Center
- Knechtle. M., Chesney, D. 2009. 2009 Scott River Salmon Studies. California Department of Fish and Game Annual Report. 20 pp
- KRTAT (Klamath River Technical Advisory Team) 2012. Klamath River Fall Chinook Age-Specific Escapement, River Harvest, and Run Size Estimates, 2011 Run. 19pp.
- True, Kimberly, Bolick, A. and Foott, J.S. 2011. FY 2010 Investigational Report:
  Myxosporean Parasite (*Ceratomyxa shasta* and *Parvicapsula minibicornis*)
  Annual Prevalence of Infection in Klamath River Basin Juvenile Chinook Salmon,
  April-August 2010. U.S. Fish & Wildlife Service California— Nevada Fish Health
  Center, Anderson, CA. http://www.fws.gov/canvfhc/reports.asp.