Welcome to the Conservation Lecture Series

Upcoming Lectures

- Sierra Nevada Red Fox April 11, 1:00-3:00.
 Presented by Dr. Ben Sacks
- Alameda Striped Racer April 24, 1:00-3:00. Presented by Karen Swaim
- California Tiger Salamander April 28, 10:00 am-12:00. Presented by Dr. Chris Searcy
- Shasta Crayfish April 29, 10:00-11:30.
 Presented by Dr. Maria Ellis. Location: Redding
- Desert Tortoise May 22 (time TBD). Presented by Becky Jones. Location: Los Alamitos
- Amargosa Vole June 9, 1:00-3:00. Presented by Dr. Janet Foley and Dr. Robert Klinger

Questions?

Contact: margaret.mantor@wildlife.ca.gov

Yellow starthistle biology and control

Joe DiTomaso UC Davis

Acres of western states infested with major invasive species

Species	Acres infest	ted	% annual		
	(X)	million)	increase		
Downy brom	e 56.	0	14		
Yellow starth	istle 14.	8	13-17		
Canada thist	le 7.	1	10-12		
Sericea lespe	deza 5.	5	24		
Spotted knap	weed 5.	2	10-24		
Musk thistle	4.	7	12-22		
Leafy spurge	3.	7	12-16		
Saltcedar	3.	7	1-25		
Medusahead	2.	4	12		
Perennial per	operweed 2.	0	11-18		
Diffuse knap	weed 1.	8	16		
Russian knap	weed 1.	2	8-14		

Duncan, Jachetta, DiTomaso et al. 2004. Weed Technology 18, 1411

Available through the Cal-IPC.org website

Yellow Starthistle Management Guide

Alexandron in Contracted and American Street Laws transferred to Contract Department of Party Laws transmission of Contracts Track

A COLOR DE LEVEL DE L

Subsected by Social Advances Income Front Concert

All Array Corps of Designation Corps Corps

Yellow starthistle root growth

24 d

9

5

4

3

31 d

38 d

44 d

60 d

UC Davis Weed Science Program Copyright Regents, University of California Photo by Joe DiTomaso

DiTomaso, Kyser and Pirosko. 2003. Weed Science 51, 334

UC Davis Weed Science Program Copyright Regents, University of California Photo by Tom Lanini UC Davis Weed Science Program Copyright Regents, University of California Photo by Joe DiTomaso

Pattern of Total Soil Water content (cm/150 cm) Over Four Years

Total Soil Water Content by Season Averaged Across Years

Potential Water Cost Estimates

- YST maintained a drier soil profile by 6.6 cm H₂O compared to the annual grasses
 - **a** (0.066m H₂O) x 10,000 m²/ha = 660 m³/ha
 - 0.21 acre feet of water
 - (\$12.00-30.00/Acre ft) = (\$2.58-6.47 lost)
- A higher estimate by Gerlach (2000)
 - $(0.12 \text{m H}_2\text{O}) \times 10,000 \text{ m}^2/\text{ha} = 1200 \text{ m}^3/\text{ha}$
 - 0.39 acre feet of water
 - (\$12.00-30.00/Acre ft) = (\$4.72-11.70 lost)
- Siskiyou County alone, 26.4 million gallons water lost/yr, equivalent to 15-25% of mean annual precipitation

Root chamber dimensions: 1 m wide on both sides X 2.4 m tall Sunken telephone booths

June 3, 2005 – counting yellow starthistle roots.

Senescing yellow starthistle in late summer

Red marks show amount of individual root growth.

- 120

- 150 am

ith

Depths correlate with neutron probe soil moisture depths.

Next year under drought, YST produced 72% fewer roots compared to previous year

Under drought, *Elymus* produced 50% fewer roots compared to previous year

Three distinct stages of development in the life cycle of YST

Conclusions

- Years with little to no deep soil moisture recharge, roots remain in the shallow regions of the soil typically occupied by annual grasses, thereby intensifying competitive interactions.
 - YST would be functionally similar to annual grasses in drought years (also competes with perennials)
 - In normal or wet years would be functionally similar to deep-rooted perennial species, such as *E. glaucus*.
- G. camporum is an early-succession species and a good colonizer in newly restored or disturbed plant communities, but is not tolerant to further disturbance or competition with other grassland species in California.

Significance

- Control of yellow starthistle is most efficient a couple of weeks before plants reach bolting stage
 - No impact to water use
 - Greatest benefit to desirable competing species
- Biomass and reproductive output of plants already determined by the beginning of the flower stage
 - Can explain the efficacy of burning and mowing during the early flowering stages
 - Little opportunity for plants to recover after soil moisture content has been maximally reduced

Dittrichia graveolens (stinkwort)

Fig. 1. Approximate rate of spread of *Dittrichia graveolens* in California as represented by the number of California counties where plant collections have been made between 1984 and 2012 (Consortium of California Herbaria 2012).

Fig. 2. Chronological spread of stinkwort in California counties from 1984 to 2012.

A. Stinkwort	Jan	Feb	Mar	Apr	Мау	Ju	n Ji	ul .	Aug	Sep	Oct	Nov	Dec	
Germination	Ger	minat	ion									Germi	nation	
Growth				Ro	osette	M	oderat prowth	e	Expor can gro	nential opy wth				
Described											Flowering			
Reproduction											See	d produc	tion	
Dispersal												Dispersa	I	
B. Wild mustard	Jan	Feb	Mar	Apr	May	Ju	n Ji	ul i	Aug	Sep	Oct	Nov	Dec	
Germination	Germinat	tion										Germin	ation	
Growth	Rosette	Rap	oid grow	th										
Description			Flo	owerin	g									
Reproduction				Seed production										
Dispersal		Dispersal												
C. Yellow														
starthistle	Jan	Feb	Mar	Apr	May	Ju	n J	ul .	Aug	Sep	Oct	Nov	Dec	
Germination	Ger	minat	ion									Germin	ation	
Growth			Rosett	e	Moder grow	ate th	Expo car gro	nentia nopy owth	il .					
								F	lower	ing				
Reproduction							See	Seed production						
Dispersal									C)ispersal				

Fig. 3. Life cycle of (A) stinkwort (*Dittrichia graveolens*), a late-season winter annual, compared to the life cycles of (B) wild mustard (*Sinapis arvensis* L.), a typical early-season winter annual, and (C) yellow starthistle (*Centaurea solstitialis* L.), a typical late-season winter annual.

- Mechanical
 - Handpulling, hoeing, weed whips
 - Tillage
 - Mowing
- Biological
- Cultural
 - Grazing
 - Prescribed burning
- Chemical
- Integrated approaches
 - Burning and chemical
 - Revegetation
Harrow

Disk

Rotary mower

14

Soil surface

Growth form of YST affects mowing success

UC Davis Weed Science Program Copyright Regents, University of California Photo by Joe DiTomaso

Yellow starthistle rosette height under shadecloth and in full sun (ca. 100 days after germination)

UC Davis Weed Science Program Copyright Regents, University of California Photo by Jae <u>Di</u>Tomaso

Hairy weevil *Eustenopus villosus*

UC Davis Weed Science Program copyright Regents, University of California Photo by Jack Kelly Clark

> False Peacock Fly *Chaetorellia succinea*

Biocontrol distribution and attack rates in California

Percentage of Heads					
Insect spp.	Cause of damage	Early season	Mid-season		
		N=229	N=231		
Eustenopus	Feeding/ovipos.	72	9		
villosus	Larvae	17	3		
Chaetorellia succinea	Larvae	26	41		

Yellow starthistle biomass with simulated biocontrol or mowing

Treatment	Shoot wt (g)	Developed capitulum wt (g)	Undeveloped capitulum wt (g)	Total aboveground wt (g)
Untreated	384.3 ± 15.9 a	130.1 ± 30.1 a	1.05 ± 0.2 a	515.4 ± 15.9 a
Bud damage	390.4 ± 59.3 a	91.6 ± 22.5 ab	5.5 ± 0.9 b	487.4 ± 78.9 a
Mowed	108.9 ± 16.1 b	38.6 ± 9.7 b	0.65 \pm 0.2 a	148.1 ± 25.3 b
P > F	0.001	0.04	0.008	0.0019

Number of seeds per plant with controls (C), mowed (M), and simulated biocontrol (D)

Puccinia jaceae var. solstitialis

- Found in Turkey; Approved for released by CDFA in 2003
- Attacks vegetative part of plant

Grazing

Animal	Digestive systems	Feeding behavior	Classification
Cattle	Large rumens adapted to ferment fibrous material	Best for managing fibrous herbaceous vegetation, prefer grasses but will also graze yellow starthistle at the bolting stage	Grass and roughage eaters
Sheep	Large rumen adapted to ferment fibrous material	Can selectively graze and tolerate high fiber content, diet dominated by forbs, will control yellow starthistle when grazed at bolting stage, but not in rosette stage	Forb and roughage eaters, more easily managed by human herders, used for strategic grazing
Goats	Large liver mass that allows processing of secondary compounds less digestible or more toxic to other grazers	Mouths designed to strip leaves from woody plants and chew branches, will also feed on yellow starthistle in the spiny stage	Browsers used often to control woody species

UC Davis Weed Science Program Copyright Regents, University of California Photo by Graig Thomson Prescribed burning

UC Davis Weed Science Program Copyright Regents, University of California Photo by Joe DiTomaso

Vegetative cover in July

Yellow starthistle seedbank recovery

p< 0.05

p< 0.1

introduced

n.s.

Aminopyralid (Milestone)

* LSD (P=0.05)

Transline (clopyralid) treated rangeland on right

Stage of growth at treatment stage

Aminopyralid 3 oz/A

*LSD (P=0.05) **LSD (P=0.01)

Yellow starthistle control

		Control 60 DAT		ntrol 60 DAT	
		Rate			
Treatment	Timing	oz ai/A	product/A	YST	Filaree
aminocyclopyrachlor	rosette	0.5	0.625 oz	67 c	27 bc
aminocyclopyrachlor	rosette	1	1.25 oz	90 b	27 abc
aminocyclopyrachlor	rosette	1.5	1.875 oz	100 a	53 ab
aminocyclopyrachlor	rosette	2	2.5 oz	100 a	47 ab
aminocyclopyrachlor	rosette	2.5	3.125 oz	100 a	57 ab
aminocyclopyrachlor	rosette	3	3.75 oz	100 a	73 a
aminopyralid	rosette	0.75	3 fl oz	100 a	60 ab
aminopyralid	rosette	1.25	5 fl oz	100 a	33 abc
untreated	rosette			0 d	0 c

Selective way of using a non-selective herbicide

Rope wick application of Roundup (glyphosate)

ATV or tractor attachment with rope wick applicator

Treated with acetic/citric acid combination

Burning and chemical

- Revegetation and chemical
- Mowing and chemical

San Benito site following burn in 1999

YST cover following two years of control

Ripgut brome (*Bromus diandrus*)

Primarily ripgut brome

Medusahead *Taeniatherum caput-medusae*

Integrated management of YST at Ft. Hunter Liggett

Site		Seedlings/m ²		
	Treatment	Untreated	Treated (% untreated)	
Military use				
2000	Burned 1999	117	271 (232%)	
	Clopyr. 2000			
2001		478	2 (0.4%)	
Wildland site				
2000	Burned 1999	435	547 (126%)	
	Clopyr. 2000			
2001	Burned 2001	1560	6 (0.4%)	
2002	No treatment	987	45 (5%)	

Brown Brush Monitor

Foreground: Annual grass community Background: Perennial grass community

Late Season Yellow Starthistle Cover (summer 2000)

Native perennial grass (Elymus glaucus)

Best timing of aminopyralid for control of yellow starthistle

		Yellow starthistle cover at each evaluation date				
		July 2010	May 3, 2011	August 1, 2011	May 23, 2012 ^a	
Site	Time of application					
Mission	November 2009	17.3 b	32.3 b	52.8 a	0	
	January 2010	0.3 c	1.3 c	11.7 b	0	
	March 2010	0 c	0.1 c	0.7 b	0	
	None	43.4 a	50.0 a	47.4 a	0	
	Probability F	< 0.0001	< 0.0001	< 0.0001		
Back	November 2009	20.8 b	15.0 b	89.4 b	0	
	January 2010	0.3 c	0.6 c	12.9 c	0	
	March 2010	0.2 c	0.2 c	4.6 d	0	
	None	84.3 a	50.7 a	100.0 a	0	
	Probability F	< 0.0001	< 0.0001	< 0.0001	_	

Stipa cernua was the most successful seeded species to establish, but establishment required 3 yr. January or March aminopyralid treatment integrated with perennial grass drill seeding in January was most successful.

	-	Stipa cernua cover Aminopyralid application timing				
	-					
	_	November	January	March	untreated	
Year of evaluation	Drill seed timing -					
2010	December	0 b	0 b	0.6 b	0 b	
	January	0.6 b	2.7 ab	4.6 a	1.1 ab	
	March	0 b	2.8 ab	0.3 b	0 b	
	unseeded	0 b	0 b	0 b	0 b	
2011	December	0 b	0 b	0 b	0 b	
	January	0 b	0.6 ab	5.0 a	0.2 b	
	March	0 b	0.6 ab	2.2_ab	0 b	
	unseeded	0 b	0 b	0 b	0 b	
2012	December	1.2 de	3.3 de	3.5 cde	1.0 de	
	January	23.5 a	18.8 a	10.8 abc	13.2 ab	
	March	4.0 bcde	6.8 bcd	2.0 de	3.7 cde	
	unseeded	0 e	0 e	0 e	0 e	

Summary of YST management

- Numerous successful control options
 Timely mowing, grazing, burning, herbicides
- Keys to long term success
 - Deplete the seedbank
 - Prevent new seed recruitment
 - Off site recruitment
 - Livestock, vehicles, wind
 - On site escapes
 - Skips, fringe areas, fencelines, satellite populations
 - Monitoring and detection of YST
 - Spot treatment or follow-up program

Thanks for your attention

Questions?