Technical Report, LSDIS Lab, University of Georgia, March 2002.

Complex Relationship and Knowledge Discovery
Support in the InfoQuilt System

Amit Sheth, Sanjeev Thacker and Shuchi Patel
Large Scale Distributed Information Systems Lab
Computer Science Department, University of Georgia
http://1sdis.cs.uga.edu, amit@cs.uga.edu

Abstract

Support for semantic content is becoming more common in Web-accessible information
systems. We see this support emerging with the use of ontologies and machine-readable,
annotated documents. The practice of domain modeling coupled with the extraction of
domain-specific, contextually relevant metadata also supports the use of semantics..
These advancements enable knowledge discovery approaches that define complex
relationships between data that is autonomously collected and managed. The InfoQuilt'
system supports one such knowledge discovery approach. This paper presents (parts of)
the InfoQuilt system with the focus on its use for modeling and utilizing complex
semantic inter-domain relationships to enable human-assisted knowledge discovery over
Web-accessible heterogeneous data. This includes the specification and execution of
Information Scale (IScapes), a semantically rich information request and correlation
mechanism.

1. Introduction

1.1 Motivation

A large amount of information is broadly accessible as a result of affordable distributed
computing infrastructures, especially the Internet and the World Wide Web. The second
generation of the World Wide Web called the Semantic Web will go beyond providing
content for humans to view, and will enable computer programs or agents to
“understand” better the information content available in web sources [LHLO1] and other
open sources. To take maximum advantage of this increased “awareness” of computers,
we need to support meaningful information requests that capture user’s information need
more precisely than is possible with present-day techniques and enable human-assisted
knowledge discovery.

A great deal of research into enabling technologies for the Semantic Web and semantic
interoperability in information systems has focused on domain knowledge representation
through the use of ontologies. Current state-of-the-art ontological representational
schemes represent knowledge as a hierarchical taxonomy of concepts and relationships
such as is-a/role-of, instance-of/member-of and part-of. Systems based on these schemes
and associated “crisp logic” based reasoning or inference mechanisms [DecO1] support
queries of limited complexity [DHM+01]. Additional research in query languages and

" One of the incarnations of the InfoQuilt system, as applied to the geographic information as part of the
NSF Digital Library II initiative is the ADEPT-UGA system [Ade]. This research was funded in part by
National Science Foundation grant 11S-9817432.

Technical Report, LSDIS Lab, University of Georgia, March 2002.

query processing is rapidly continuing. Relationships between concepts are the primary
building block of any method of supporting semantics [She96,Wie97]. The vast majority
of research to date has focused on processing hierarchical relationships that are
mathematically well defined (e.g. subsumption to identify placement of a concept in a
concept hierarchy, transitivity computation to support parts hierarchy). The focus of the
InfoQuilt system is to extend support for semantics by supporting computations involving
lateral, user-defined relationships. Furthermore, InfoQuilt aims to support human-assisted
knowledge discovery by allowing users to pose questions that involve complex and
hypothetical relationships amongst concepts both within and across domains. In doing
so, users gain a better understanding of their domains of study and the interactions
between them. Relationships across domains (e.g. causal relationships) may not
necessarily be hierarchical in nature and may involve complex information requests
involving user-defined functions and fuzzy or approximate match of objects. These types
of relationships therefore require a richer environment in terms of expressiveness and
computation. For example, a user may want to know “Does Nuclear Testing cause
Earthquakes?” Answering such a question requires correlation of data from sources
belonging to the domain Natural-Disasters.Earthquake with data from sources belonging
to the Nuclear-Weapons.Nuclear-Testing domain. Such a correlation is only possible if,
among other things, the user’s notion of “cause” is clearly understood and exploited. This
involves the use of ontologies of the involved domains for shared understanding of the
terms and their relationships. Furthermore, the user should be allowed to express their
meaning (or definition) of the causal relationship. In our example, the meaning of
“cause” could be based on the proximity in time and distance between the two events,
nuclear tests and earthquakes. This meaning should be exploited when correlating data
from the different sources. Subsequent investigation of the relationship by refining and
posing other questions based on the results presented, may lead the user to a better
understanding of the nature of the interaction between the two events. This process is
what we refer to as Human-Assisted KNowledge Discovery (HAND), or Hypothesis
Driven Knowledge Discovery. In this paper, we present the InfoQuilt system and
describe its approach to the challenge of enabling such a knowledge discovery on the
Semantic Web.

1.2 Background

Domain modeling, especially using ontologies, is a crucial step in enabling the Semantic
Web [BHLO1, FHLWO02], as well as other advanced capabilities such as HAND.
Ontologies become the basis of metadata and knowledge sharing as they represent
ontological commitment or the agreement among the domain experts and users about the
terms or concepts and relationships between them. Relationships between entities (terms
or concepts) are the basis of capturing, representing, and supporting semantics. Present
day ontology languages, such as those based on RDF/RDFS, F-Logic, Conceptual
Graphs, SHOE, Description Logic (including DAML+OIL) provide formal
representations of relationships and the ability to have relatively efficient inferencing
capabilities [SemWeb].

However, the complex, user-defined, inter-ontological relationships that HAND requires
are beyond the expressive and computational capability of languages like the ones listed

Technical Report, LSDIS Lab, University of Georgia, March 2002.

above. One example of a deficiency shared by most of these languages is the absence
of a mechanism that can model complex operators. Consider the relationship of an
Earthquake causing a Tsunami. Temporal and spatial proximity between the two events
are two aspects of this relationship [EFDCO02]. The use of simple equality to compute
them would be incorrect or insufficient because these proximities involve some
approximate matching, which is context-specific. The tsunami could occur a few hours
after the earthquake. Calculating the temporal proximity in this case requires fuzzy or
approximate comparison. InfoQuilt supports such operators by allowing the use of user-
defined functions as operators. Such functions can additionally be used for fuzzy or
approximate matching of data values from two sources. It is very likely to come across
two values (for the same term) that mean the same but are not “equal” syntactically. For
example, “Nevada Test Site, Nevada, US” and “Nevada Test Site (NTS), NV, USA” both
refer to the same nuclear test site. However, the two values are syntactically not equal.
Another use of functions is for complex post-processing of data. Simulation is a
particularly interesting example. For example, simulation programs are widely used in
the field of Geographical Information Systems to forecast patterns of urban land-cover,
land use, deforestation, water consumption, pollution, etc. If these programs are available
as user-defined functions, they can be run using data available from multiple autonomous
data sources.

Apart from the Internet and the web, a large number of other types of open sources (e.g.
databases, premium on-line services, limited addition publications and “gray literature™)
can also be accessed over a network. One of the most basic requirements for HAND is
the availability of large amounts of data. In practice, this is distributed over a large
number of heterogeneous and autonomous sources. Hence, the ability to handle wide
varieties of data sources (which may contain static or dynamic data) is crucial.

The use of metadata is often makes searching data more efficient. However, in order to
discover “knowledge”, it is crucial for the system to be able to “understand” the data. The
system particularly needs to extract domain-specific or contextually relevant metadata
from all the data sources. This type of metadata is extremely useful to integrate
information from multiple sources in a more meaningful way using user-defined
relationships. Recently, significant commercial success has been achieved in
automatically extracting domain specific (or contextually relevant) metadata and using it
to provide semantic search over relevant attributes (as opposed to keyword based
searches provided by traditional search engines) [SABO1, SBA+02]. Consider the
information request “Find all movies that were directed by Clint Eastwood”. Because the
movie objects have associated metadata for actors as well as directors, semantic search
can avoid returning movies in which Clint Eastwood was an actor but not a director.
Support for semantics through the use of domain-specific attributes provides early
examples of realizing the promise of the Semantic Web.

In addition to modeling the semantics of the domains, knowledge of the characteristics of
the domains of interest gives us the ability to optimize the processing of information
requests. . The InfoQuilt system accomplishes this by utilizing information about the
characteristics and limitations of the available data sources when selecting the sources

Technical Report, LSDIS Lab, University of Georgia, March 2002.

that are relevant to a particular information request. Such information includes use of
domain characteristics, functional dependencies, characteristics of the data available from
each resource, local completeness of the resources, binding patterns on the resources, etc.

This paper discusses a form of knowledge discovery, HAND, supported in the InfoQuilt
system. The following are the core capabilities that make HAND possible:

e Domain modeling that uses ontologies to describe terms and concepts relevant to
the domain, domain rules and functional dependencies to model domain
characteristics, and support of complex user-defined inter-ontological
relationships

e Rich and powerful querying mechanism known as IScape that utilizes the domain
ontologies, inter-ontological relationships, and user defined functions to
accurately describe a user’s information need

e User defined functions as complex operators, especially for fuzzy/approximate
matching, complex post-processing (esp. simulations) and result analysis (e.g.,
chart creator)

e Ability to handle heterogeneous, static or dynamic content

e Information Extraction: Semi-Automatically or automatically create domain-
specific or contextually relevant metadata

e Information request processing utilizing domain and resource characteristics
(domain rules, functional dependencies, resource rules, local completeness,
binding patterns)

The concepts and algorithms described in the paper are implemented and functional in
the current version of the system. The remainder of the paper is organized as follows.
Section 2 shows how the knowledgebase of the system is modeled. This includes domain
ontologies, inter-ontological relationships, and user-defined functions. Section 3
describes how IScapes, complex information requests such as the one discussed earlier,
can be specified to the InfoQuilt system. Section 4 describes how InfoQuilt supports
Human Assisted Knowledge Discovery (HAND) and decision-making by exploring
hypothetical relationships with an extensive example. Section 5 describes the runtime
architecture of InfoQuilt. Section 6 discusses how information from the diverse
heterogeneous source can be extracted and integrated. It also describes METIS, a toolkit
for automating the creation of an integrated metabase using several heterogeneous and
diverse sources. Section 7 explains how data sources are modeled in the system. Section
8 describes how an IScape specified using high-level domain models and complex
relationships are translated into practical execution plans that specify exactly how the
request is to be answered. The processing of an [Scape is multi-threaded and parallel and
can be monitored as it progresses. Section 9 describes [Scape execution and monitoring.
Section 10 describes the various tools provided by InfoQuilt to help the administrator to
create and manage knowledgebase and to help the users to create and deploy IScapes. We
compare our work with other related efforts in section 11. Finally, section 12 presents our
conclusions and plans for future enhancements.

Technical Report, LSDIS Lab, University of Georgia, March 2002.

2. Knowledge Modeling

The InfoQuilt system maintains information about the domains of interest, complex real-
world relationships between them, and various operations that can be performed on the
data. This forms the Knowledgebase of the system. In a typical scenario in using the
InfoQuilt system, an administrator would first create the knowledgebase of the system. A
user can then use this knowledgebase to define IScapes and execute them. This section
describes how the knowledgebase of the system is modeled.

2.1 Domain Modeling

InfoQuilt uses ontologies to model the domains of interest. Ontologies capture useful
semantics about the domains that they model such as the terms and concepts of interest,
their meanings, relationships between them, and the characteristics of the domain. The
terms and concepts of the domain are represented as attributes of the classes in the
ontology. Classes in ontologies are modeled in a hierarchy that allows modeling simple
“is-a” relationships. Additionally, the administrator can also model useful characteristics
of the domain as domain rules and functional dependencies. Ontologies provide a
structured, homogeneous view over all the available data sources. It is used to standardize
the meaning, description, and the representation of the attributes across the sources.
When all the resources are mapped to this integrated view, resolving source differences
and schema integration become easier.

longitude ..m
eventDate
jatitude >= -90° / —
description
Disaster

latitude == 30 /\ longitude == -180°
q Phot longitude <= 180°
Matural han-made

Disaster Disaster
numberOfDeaths / \ bodyWWavehlagnitude

Volcana
Earthquake
MNuclearTest
@WaveMagnitudeﬁ)”'ﬂ

] testSite ==
C@Wavehﬂagmtude sl atitude. lonaitude

Figure 1: Disaster Ontology (partial)

o

explosiveYield

An example ontology is shown in Figure 1. A class inherits all the attributes, domain
rules and functional dependencies defined on its parent class. The user can create a
classification of real-world entities and represent them as ontologies in the system. This
classification is based on the human perception of the world broken down into several
domains and their sub-domains and so on (real world objects as perceived from a
modeling standpoint). Consider the domain of disasters. They could be sub-categorized

Technical Report, LSDIS Lab, University of Georgia, March 2002.

as natural disasters and man-made disasters. Natural disasters could be further sub-
categorized into Earthquakes, Volcanoes, Tsunamis, etc. Similarly, man-made disasters
can have sub-categories like nuclear tests.

2.1.1 Attributes

The terms and concepts of the domain are represented as attributes of the classes of the
ontology. The meaning of each attribute is standardized so that it has a precise
interpretation and use. For example, an earthquake can have attributes like the date it
occurred, region where it occurred, latitude and longitude for its epicenter, a description,
number of people that died, magnitude and an image showing some damage or fault line.
We will also use the following notation to represent a class in an ontology.

Earthquake (latitude, longitude, region, eventDate, description,
damagePhoto, numberOfDeaths, magnitude);

Here, the attributes latitude, longitude, region, eventDate, and description are inherited
from the class Disaster and the attributes damagePhoto and numberOfDeaths are
inherited from NaturalDisaster.

2.1.2 Domain Rules

Domain rules and functional dependencies describe the characteristics and semantics of a
domain. Domain rules describe a condition that always holds true for the domain. These
can be used for query validation and optimization of query plans. For example, a simple
fact that the latitude of a location on earth should lie between —90° and 90° can be
described by the following rules on the ontology Disaster:

latitude >= -90
latitude <= 90

Similarly, we can also model the fact that the longitude of a location should be in the
range -180 ° to +180 ° using two domain rules. The domain rules defined for a class are
inherited by the child classes. The ontology Earthquake therefore inherits these domain
rules Disaster. We represent it using the following notation:

Earthquake (latitude, longitude, region, eventDate, description,
damagePhoto, numberOfDeaths, magnitude,
latitude >= -90, latitude <= 90,
longitude >= -180, longitude <= 180);

2.1.3 Functional Dependencies (FD)

A functional dependency (FD), like in databases, specifies that two entities having the
same values for all attributes appearing on the left-hand side (LHS) of the FD will have
the same values for the corresponding variables appearing on the right-hand side (RHS).
It is very likely to come across resources that do not provide values for certain attributes.
The information about the FDs of a domain is used to retrieve information (attribute
values) that is missing from a resource by using another resource (an associate resource),
thereby deducing extra information and retrieving more comprehensive results with the
same available resources, as described in section 8. For example, a functional

Technical Report, LSDIS Lab, University of Georgia, March 2002.

dependency on the class NuclearTest is that the testsite of a nuclear test implies the
latitude and longitude of the place. This can be represented as:

testSite -> latitude longitude

The ontology NuclearTest can therefore be represented as follows:

NuclearTest (latitude, longitude, eventDate, description,
testSite, conductedBy, explosiveYield, bodyWaveMagnitude,
latitude >= -90, latitude <= 90,
longitude >= -180, longitude <= 180,
bodyWaveMagnitude > 0, bodyWaveMagnitude < 10,
testSite -> latitude longitude);

2.2 Inter-Ontological Relationships

Entities in the real world are related to each other in various ways [SK93, KS96, KS98§].
These relationships can be very simple like “is-a”, “is-part-of”, “is-similar-to”, “is-
associated-with” which are hierarchical or similarity based and help to relate the entities
in a very basic manner. For example, a nuclear test “is-a” man-made disaster. Most
Information Integration systems do not support any types of inter-ontological
relationships, although there is significant research interest in addressing mismatch
between ontologies [SMO1, KO1]. Support for such simple relationships allows us to
relate information in a simple way. OBSERVER is an example of a system that supports
inter-ontological relationships to deal with vocabulary heterogeneity between multiple
ontologies, using synonyms, hyponyms, and hypernyms [MIKS00]. However, several
real-world relationships between entities are much more complex and it is not possible to
express them using simple relational and logical operators. For example, consider the
relationships “‘earthquake causes tsunami”, ‘“air-pollution affects vegetation”, and
“nuclear test causes earthquake”. These are some examples of the complex relationships
that typically span across multiple classes or ontologies. To express such relationships
one needs to be able to model the semantics involved in the interaction between the
domains. A novel feature of InfoQuilt is that it provides an infrastructure to model such
complex relationships and use them to specify IScapes. This forms the basis of Human
Assisted Knowledge Discovery (HAND) as discussed further in section 4.

Consider the relationship between a nuclear test and an earthquake. We can say that some
nuclear test “could have caused” an earthquake if we see that the earthquake occurred
some time after the nuclear test was conducted and in nearby region. The constraints
“some time after” and “in nearby region” need specialized operators. Use of such
operators is necessary to model relationships because evaluations of relationships need
evaluations of constraints and computation of values. Several such evaluations and
computations cannot be expressed as expressions using only relational and logical
operators. In our example, the sub-constraint “in nearby region” is spatially approximate.
Both Earthquake and NuclearTest ontologies represent their exact location in terms of
latitude and longitude. Using the = operator to check if the two occurred in the same
region does not make sense in the context of these domains and relationship because the
two are geographical phenomena that span large areas. The region matching thus has a
spatial scope. InfoQuilt supports user defined functions (see section 2.3), which can be

Technical Report, LSDIS Lab, University of Georgia, March 2002.

used as specialized operators to model relationships. For now, assume that there are two
functions called dateDifference and distance available to the system. The function
dateDifference takes two dates as arguments and returns number of days from datel to
date2. The function distance takes the latitudes and longitudes of two places and
calculates the distance between them. Given that we can use these functions, we can
represent the relationship as follows:

NuclearTest Causes Earthquake:
<= dateDifference (NuclearTest.eventDate, Earthquake.eventDate) < 30
AND distance(NuclearTest.latitude, NuclearTest.longitude,
Earthquake.latitude, Earthquake.longitude) < 10000

The values 30 and 10000 here are arbitrary. In fact, a user can try different values to
analyze the data. This is a part of the knowledge discovery paradigm that the system
supports, as described further in section 4.

2.3 Operations

A distinguishing feature of InfoQuilt is its framework to support user-defined operations.
As seen in section 2.2, we used the user-defined functions dateDifference and
distance as operators to describe a complex inter-ontological relationship between
NuclearTest and Earthquake. The user can also use them to specify additional
constraints in their IScapes. For example, consider the IScape:

“Find all earthquakes with epicenter in a 5000 mile radius area of the location at latitude
60.790 North and longitude 97.570 East”

The system needs to know how it can calculate the distance between two points, given
their latitudes and longitudes, in order to check which earthquakes’ epicenters fall in the
range specified. The distance function can again be used here.

These user-defined functions are also helpful for supporting a context-specific fuzzy or
approximate matching of attribute values. For example, assume that we have two data
sources for the domain of earthquakes. It is quite possible that two values of an attribute
testSite retrieved from the two sources may be syntactically unequal but refer to the same
location. Considering the example given earlier, the value available from one source
could be “Nevada Test Site, Nevada, USA” and that from another source could be
“Nevada Site, NV, USA”. The two are semantically equal but syntactically unequal
[KS96]. Fuzzy or approximate matching functions can be useful in comparing the two
values.

Another important advantage of using operations is that the system can support complex
post-processing of data. An interesting form of post-processing is the use of simulation
programs. For instance, researchers in the field of Geographic Information Systems (GIS)
use simulation programs to forecast characteristics like urban growth in a region based on
a model. InfoQuilt supports the use of such simulations like any other operation. They
provide valuable additional information that is not often available from the resources
directly. For example, Clarke’s Urban Growth Model [Cla] is a model to forecast the

Technical Report, LSDIS Lab, University of Georgia, March 2002.

urban growth in a region in several ways. For example it can use information about the
areas in the region where it is known that growth cannot occur for some reason (roads,
slopes, vegetation, etc.). It requires that this information be specified as a set of maps and
generates a series of maps showing the progressive urban growth using a specified time
step. This simulation can be run on data that can be retrieved from some resource (or
multiple resources) that provides these mapi!other way to forecast urban growth in a
region using the Clarke UGM model is to use a set of maps of the urban area patterns
from past years. Figure 2 shows how the urban growth in Washington D.C. area is
forecasted for the year 2025 using this method.

i 1)

Figure 2: Clarke Urban Growth Model (UGM)

To be able to dynamically and easily add new operations as well as update and delete
existing ones, InfoQuilt maintains what is known as a Function Store. The Function Store
is a component of the knowledgebase of the system. It contains information about all the
functions known to the system. We will use the terms function and operation
interchangeably in the rest of the paper. The user provides an implementation for the
function. Once the implementation is provided and it has been added to the Function
Store, the system can make use of it as described earlier. Additional tools discussed in
Sections 6.2 and 10 make it easier to incorporate such functions as part of complex
relations that can be defined by IScapes, including mapping for input and output data

types.

3. Information Scapes (IScapes)

We have used the phrase “information request” or IScapes when referring to the type of
question InfoQuilt aims to answer over the term “query” for several reasons. A query
generally explicitly specifies the exact sources (tables in a RDBMS) that need to be used
and how the data from these sources should be integrated (join conditions in a RDBMS).
Additionally, it does not “understand” what the user is asking. An IScape, on the other
hand, can understand what the user is inquiring about by embedding semantic

David Avant
this detail can probably be overlooked for simplicity

Technical Report, LSDIS Lab, University of Georgia, March 2002.

information within the request’. It is also able to identify the exact usefulness of the
sources available to it for a given request. InfoQuilt is unique in its ability to model such
IScapes. This work has been built upon the work done in [Pal00], and Metadata
REFerence link (MREF), discussed in[SS98, SK96]. An IScape is specified using
concepts belonging to one or more ontologies, and may involve complex relationships
including user-defined operations over concepts chosen from one or more ontologies. It
is the responsibility of the InfoQuilt system to generate queries over resources, in a way
that is somewhat similar to generation of queries over component databases in a federated
database, or wrapped resources in a mediator system. Two main differences are the need
to support ontology to resource mapping, as well the need to support the computation
involving complex relationships, which require mappings involving metadata and
ontologies, as well as user-defined functions. This is explained next.

Example:
Consider the following IScape.

“Find all earthquakes with epicenter in a 5000 mile radius area of the location at latitude
60.790 North and longitude 97.570 East and find all tsunamis that they might have
caused.”

In addition to the obvious constraints, the system needs to understand what the user
means by saying “find all tsunamis that might have been caused due to the earthquakes”.
The relationship that an earthquake caused a tsunami is a complex inter-ontological
relationship.

An IScape allows users to query and analyze the data available from diverse autonomous
sources. It allows specification semantic correlation between data from multiple sources,
and supports discovery by allowing human-guided discovery of relationships between
data by changing parameters defining a complex relationship. Thus we define [Scape as
“a computing paradigm that allows users to query and analyze the data available from a
diverse autonomous sources, gain better understanding of the domains and their
interactions as well as discover and study relationships.”

Any system that needs to answer such IScapes would require a comprehensive
knowledge of the terms involved and how they are related. An IScape is specified in
terms of the components of the knowledgebase of the system such as ontologies, inter-
ontological relationships and operations. This helps the system in understanding the
semantics of the request. By stating an IScape in this fashion, it prevents the user from
having to know the actual sources that will be used by the system and how the data
retrieved from these sources will be integrated. This integration includes how the results
should be grouped, any aggregations that need to be computed, constraints that need to be
applied to the grouped data, and projection upon the resulting set of information. In
particular, an IScape specifies the following:
e the ontologies involved,

? Use of ontologies, context and relationships are critical in defining information requests and in supporting
semantics — see for example DS-6 proceedings, esp. [Wie97] and [She96].

10

Technical Report, LSDIS Lab, University of Georgia, March 2002.

inter-ontological relationships,
preset constraints,
runtime configurable constraints,
how the results should be grouped,
any aggregations that need to be computed or constraints that need to be applied
to the grouped data, and finally
¢ information that needs to be returned in the result to the user.
Let’s briefly reviewed these components.

The ontologies in the IScape identify the domains that are involved in the IScape and the
inter-ontological relationships specify the semantic interaction between the ontologies.
The preset constraint and the runtime configurable constraint are filters used to describe
the subset of data that the user is interested in, similar to the WHERE clause in an SQL
query. For example, a user may be interested in earthquakes that occurred in only a
certain region and had a magnitude greater than 5. As its name implies, a runtime
constrain can be set at the time of executing the IScape, whereas present constraint are
defined when the IScape is first constructed. The results of the IScape can be grouped
based on attributes and/or values computed by functions. If the results are to be grouped,
the user can also specify any aggregations to be returned as a part of the result or specify
additional constraint on the groups formed (similar to the HAVING clause in the
SELECT statement in SQL). The aggregates supported by the system are sum (SUM),
average (AVG), count (COUNT), minimum (MIN) and maximum (MAX). Finally, the
user specifies a list of all the information that is to be returned as a part of the result. We
refer to this as the projection list. It could include attribute values, computed aggregates,
values of functions evaluated on the data, and results of simulation programs.

XML provides syntactic basis for an IScape (see [Lak00] for further details on IScape
syntax) . A person uses a graphical toolkit known as the IScape Builder to construct and
execute [Scapes and analyze their results. That it, the IScape Builder is a graphical tool
that supports ease of development and deployment of IScapes using the knowledgebase
without having to understand the underlying formats used by the system. We describe the
IScape Builder in detail in section 10.2, and provide XML representation of an IScape
that is generated by this tool in Appendix A.

4. Human Assisted Knowledge Discovery (HAND)

Existing relationships in the knowledgebase provide a scope for discovering new aspects
of relationships through transitive learning. For example, consider the ontologies
Earthquake, Tsunami and Environment. Assume that the relationships “Earthquake
affects Environment”, “Earthquake causes Tsunami” and “Tsunami affects Environment”
are defined and known to the system. We can see that since Earthquake causes a Tsunami
and Tsunami affects the environment, effectively this is another way in which an
Earthquake affects the environment (by causing a tsunami). If this aspect of the
relationship between an Earthquake and environment was not considered earlier, it can be
studied further. The current system does not automatically apply transitive learning, the
ISCAPE designer can explicitly specify relationships to effect traversal of transitive
relationships.

11

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Another valuable source of knowledge discovery is studying existing IScapes that make
use of the ontologies, their resources and relationships to retrieve information that is of
interest to the users. The results obtained from [Scapes can be analyzed further by post
processing of the result data (e.g., the example of the Clarke UGM. The data available
from various sources can be queried by constructing IScapes and the results can be
analyzed by using charts, statistical analysis techniques, etc. to study and explore trends
or aspects of the domain. Such analysis can be used to validate any hypothetical
relationships between domains and to see if the data validates or invalidates the
hypothesis. For example, several researchers in the past have expressed their concern
over nuclear tests as one of the causes of earthquakes and suggested that there could be a
direct connection between the two. The underground nuclear tests cause shock waves,
which travel as ripples along the crust of the earth and weaken it, thereby making it more
susceptible to earthquakes. Although this issue has been addressed before, it still remains
a hypothesis that is not conclusively and scientifically proven. Suppose we want to
explore this hypothetical relationship.

Consider the NuclearTest and Earthquake ontologies again. We assume that the system
has access to sufficient resources for both the ontologies such that they together provide
sufficient information for the analysis. However, note that the user need not be aware of
these data sources since the system abstracts him from them. To construct IScapes, the
user works only with the components in the knowledgebase. If the hypothesis is true, then
we should be able to see an increase in the number of earthquakes that have occurred
after the nuclear testing started. We proceed as follows. First, we check to see when
nuclear testing began.

IScape 1:
“When was the earliest recorded nuclear test conducted?”

We find that nuclear testing began in 1950. Next we check the trend of the number of
earthquakes that have occurred since the nuclear testing started. It is believed that some
earthquakes below the intensity of 5.8 on the Richter scale would have passed unrecorded
in the earlier part of the century when measuring devices were less sensitive and less
ubiquitous. But for bigger earthquakes, the records are detailed and complete [Whi89].
We therefore check the number of earthquakes with a magnitude 5.8 or higher occurring
every year in this century.

IScape 2:

“Find the total number of earthquakes with a magnitude 5.8 or higher on the Richter
scale per year starting from year 1900.”

We can then plot a chart to analyze the trend in the number of earthquakes occurring
every year. It reveals that there seems to be a sudden increase in the number of

earthquakes since 1950. We modify the query to try to approximately quantify this rise.

IScape 3:

12

Technical Report, LSDIS Lab, University of Georgia, March 2002.

“Find the average number of earthquakes per year with a magnitude 5.8 or higher on the
Richter scale for the period 1900-1949 and for the period 1950-present.”

We see that in the period 1900-1949, the average rate of earthquakes was 68 per year and
that for 1950-present’ was 127 per year indicating that it has almost doubled [Whi89].

Next, we try to analyze the same data grouping the earthquakes by their magnitudes.

IScape 4:

“For each group of earthquakes with magnitudes in the ranges 5.8-6, 6-7, 7-8, 8-9, and
magnitudes higher than 9 on the Richter scale starting from year 1900, find the number
of earthquakes.”

The results show that the number of earthquakes with magnitude greater than 7 on the
Richter scale have remained practically constant over the century (about 19) [Whi&9].
We can therefore deduce that the earthquakes caused by nuclear tests usually are of
magnitudes less than 7 on the Richter scale. We can then try to explore the data at a finer
level of granularity by trying to look for specific instances of earthquakes that occurred
within a certain period of time after a nuclear test was conducted in a near by region.

IScape 5:

“Find nuclear tests conducted after January 1, 1950 and find any earthquakes that
occurred not later than a certain number of days after the test and such that its epicenter
was located no farther than a certain distance from the test site.”

Note the use of “not later than a certain number of days” and “no farther than a certain
distance”. The IScape does not specify the value for the time period and the distance.
These are defined as runtime configurable parameters, which the user can use to form a
constraint while executing the IScape. The user can hence supply different values for
them and execute the IScape repeatedly to analyze the data for different values without
constructing it repeatedly from scratch. Some of the interesting results that can be found
by exploring earthquakes occurring that occurred no later than 30 days after the test and
with their epicenter no farther than 5000 miles from the test site are listed below.

e China conducted a nuclear test on October 6, 1983 at Lop Nor test site. USSR
conducted two tests, one on the same day and another on October 26, 1983, both
at Easter Kazakh or Semipalitinsk test site. There was an earthquake of magnitude
6 on the Richter scale in Erzurum, Turkey on October 30, 1983, which killed
about 1300 people. The epicenter of the earthquake was about 2000 miles away
from the test site in China and about 3500 miles away from the test site in USSR.
The second USSR test was just 4 days before the quake.

e The USSR conducted a test on September 15, 1978 at Easter Kazakh or
Semipalitinsk test site. There was an earthquake in Tabas, Iran on September 16,
1978. The epicenter was about 2300 miles away from the test site.

? The period of 1950-1989 implies the period 1950-1989, since the data presented here was published by
Gary T. Whiteford in 1989.

13

Technical Report, LSDIS Lab, University of Georgia, March 2002.

More recently, India conducted a nuclear test at its Pokaran test site in Rajasthan on May
11, 1998. Pakistan conducted two nuclear tests, one on May 28, 1998 at Chagai test site
and another on May 30, 1998. There were two earthquakes that occurred soon after these
tests. One was in Egypt and Israel on May 28, 1998 with its epicenter about 4500 miles
away from both test sites and another in Afghanistan, Tajikistan region on May 30, 1998,
with a magnitude of 6.9 and its epicenter about 750 miles away from the Pokaran test site
and 710 miles from Chagai test site.

5. InfoQuilt Runtime Architecture

InfoQuilt uses a multi-agent information brokering architecture at runtime. The other type
of architecture used by some information integration systems is mediator-based [Wie92].
[KS00] discuss the information brokering architecture at great length and compare it with
mediator-based architecture. Information brokering architecture uses a set of (possibly
distributed) software agents that specialize in their specific tasks and a special Broker
Agent that acts as a coordinator between them. The information brokering architecture
itself used in InfoQuilt is not new (e.g. see [BBB97]). However, to be able to perform
semantic information brokering, agents need to be more “intelligent” especially in the
areas of sharing, exchanging and interoperating across different knowledge collections
[SKL99]. The capabilities of the agents in InfoQuilt to support multiple domains,
complex inter-domain relationships, operations and IScapes differentiate the system from
previous agent-based systems. The current architecture is built upon work done in [Sin00,
Ber98, Par98]. Figure 3 shows the runtime architecture of InfoQuilt system.

Knowled
nowledge
Knowledge Agent User Agent

¥
Plalnn.m.g . . Eroker . Co}g‘relatlon
Optirmizing gent
Agent “%
.k
k] v L 4
Resource Resource Resource

ede Adent ede ede Aol ohe ede AdeNl sloe

ode Web L, ob o Database ode Other
Wrapper Wrapper Wirapper
oo oo ® =) 95" _Other? .:.:'r.a-o o

Figure 3: InfoQuilt Runtime Architecture

InfoQuilt creates a knowledgebase of information about the domains of interest to the
user, inter-domain relationships, user-defined operations and available information

14

Technical Report, LSDIS Lab, University of Georgia, March 2002.

sources. The database “knowledge” in the figure represents this knowledgebase. The
Knowledge Agent acts as an interface for any other agent in the system that needs to
access it. As seen from the figure, InfoQuilt supports a variety of information sources
such as databases, web-based sources, etc. There is one Resource Agent per resource in
the system. The Resource Agent provides a standard interface to the rest of the system to
query the corresponding resource. It may in turn use a wrapper and/or extractor that
accesses the resource, retrieves data, and maps it to the domain model in the
knowledgebase. We discuss this in more detail in section 6. The User Agent acts as the
programming interface to the system to execute IScapes. The Broker Agent is responsible
for brokering requests from various agents in the system and co-ordination of IScape
processing. The Planning Agent is responsible for the creation of high-quality practical
execution plans to execute the IScapes. The Correlation Agent executes the execution
plan to retrieve data from the sources, correlate them and do any post-processing if
required by the IScape.

The processing of an IScape follows the following steps:

1. The User Agent sends the IScape to the Broker Agent for processing.

2. The Broker Agent sends the IScape to the Planning Agent.

3. The Planning Agent creates an execution plan for the IScape after enquiring about

the specifications of various domains, relationships, etc from the Knowledge
Agent through the Broker Agent. (All interactions between the agents occur
through the Broker). If the planning agent deduces that the IScape is semantically
incorrect (see section 8), it informs the Broker Agent about it and aborts plan
generation.

4. The Planning Agent returns the plan to the Broker Agent. If the plan generation
was aborted, the Broker Agent responds back to the User Agent directly (skipping
steps 5-7).

The Broker Agent then sends the plan to the Correlation Agent for processing.

6. The Correlation Agent starts executing the plan. The execution is completely
multi-threaded. This allows the system to exploit the parallelism in the plan. We
describe the execution in more detail in section 9.1.

7. The Correlation Agent returns the final result to the Broker Agent.

8. Finally, the Broker Agent forwards the result to the User Agent.

9]

The InfoQuilt architecture supports easy dynamic addition and removal of resources from
the system declaratively with an intuitive graphical toolkit. The Planning Agent
automatically considers all newly added sources, disregards the eliminated sources and
considers any modifications to the specifications of existing sources automatically when
creating execution plans for IScapes. Similarly, domains, relationships, etc. can be
dynamically added, removed and modified. The architecture is therefore dynamic.

6. Information Extraction and Integration

Our discussions till now assumed that data was somehow made available to the system
from the available sources. This section describes how it is extracted from different
sources. There are two ways to retrieve and maintain the extracted information — extract
it as needed (i.e. when processing an IScape) and extract it offline and maintain it in a

15

Technical Report, LSDIS Lab, University of Georgia, March 2002.

local database. The first option is needed when the content available from the source is
dynamic, which is it is updated frequently. However, if the content available is static, the
second option is obviously preferable. Additionally, for static content, we can also
integrate information from different (static) sources available for a given domain offline.
Section 6.2 describes how this can be done semi-automatically.

6.1 Information Extraction

Information Extraction (IE) can be defined as the gathering of relevant data from a
collection of documents [Mus99]. We use IE techniques to extract metadata from web
sources relevant to the domains of interest. Two important metrics used to assess the
performance of an IE system are recall and precision. Recall refers to how much of the
information that should have been extracted was correctly extracted whereas precision
refers to the reliability of the information extracted [Leh]. These measures are
independent of each other. Statistics show that experienced analysts exhibit better
precision (82%) and recall (79%) in manual information extraction over automated
systems (57% precision and 53% recall). However, automating the extraction is still
preferred for large quantities of information as various human factors come into play
[Leh].

IE techniques can be used to extract information from both free text as well as semi-
structured data. AutoSlog [Ril93], Crystal [SFAL95], and Hasten [Kru95] are examples
of IE systems used to extract information from free text. We use IE techniques to extract
information from web sources that are semi-structured. IE techniques for free text are out
of scope here. [Gun00] gives an overview of types of IE techniques used for information
extraction from semi-structured data [CM97, Sod99, HGC+97, SA99].

We use an extraction toolkit from Taalee/Voquette [SABO1, SBA+02] to extract
information from individual web sources by semi-automatically creating wrappers for
each source. Another example of a toolkit is XRAP [LPHO00]. However, the information
extracted can be structured, named, represented and stored differently at different
sources. Therefore, these heterogeneity must be resolved and the information must be
converted into a canonical form before it can be integrated.

6.2 Integrated Metabase Creation and METIS

We refer to data about a real-word entity available from a source as an object. Since
potentially several resources may provide data for a domain, it is common that several
different objects retrieved from different sources actually represent the same real-world
entity. Information integration systems usually provide a uniform means of representing
the information from multiple sources, but do not integrate such objects into a single
object. Such integrated objects have the advantage that they can be stored in a metabase.
The system may then directly query this metabase instead of the sources from which
these objects were integrated. Additionally, the integration of the objects allows scope for
enhancing the information using multiple objects available for an entity. InfoQuilt
provides METIS (Metabase Creation Toolkit Integrating Multiple Heterogeneous
Sources), a toolkit for automating the creation of such a metabase from multiple
heterogeneous sources [Gun00]. A point to note is that object integration cannot be done

16

Technical Report, LSDIS Lab, University of Georgia, March 2002.

in real-time (while processing an IScape) since it is slow. It is therefore done offline.
Also, it works best for sources with relatively static data. For sources that frequently
update their data, updating the metabase frequently can be very expensive. A commercial
system based on the research in the LSDIS lab that deals with dynamic or frequently
updated source (e.g., CNN.com) is reported in [SBA+02]. However, this capability is not
part of the current InfoQuilt implementation.

The METIS toolkit [Gun00] is used to create a single repository of information for a
domain by integrating information retrieved from multiple heterogeneous sources. These
sources can be web sources, databases, etc. The information coming from each source is
first converted into a canonical representation. Next, if an object representing the same
entity is found in the metabase, the new object is merged with it. Otherwise, it is inserted
into the metabase.

Integration
Rules
Matching Weight
Functions Model
Mapping Syntactic
Functions Rules
Domain Semantic &
Model Structural Rules

Extraction
Rules

Wrapper

A A Other
.......... % Databases

Site 1 Site i Site n
Figure 4: METIS Architecture

Figure 4 shows the METIS architecture. Data from web resources can be extracted using
the most appropriate extraction tool, while a wrapper is written for each database to
convert the data represented in the internal schema of the database into attribute-value
pairs. These attributes may differ from the system’s domain model in terms of structure
as well as naming since the individual resources have their individual representations and
models of the domains. The Mapper then uses a set of structural and semantic mapping
rules to map the information in these objects to the system’s domain model. Next, the
Normalizer uses a set of syntactic rules to resolve syntactic heterogeneity between the

17

Technical Report, LSDIS Lab, University of Georgia, March 2002.

objects retrieved from different sources. For example, one source may represent a street
address as “214 N. Peachtree Ave.” and another may represent the same as value as “214
North Peachtree Avenue”. The Normalizer resolves this type of differences. This may
involve use of several mapping functions because resolving such differences is a very
context and domain-specific task. The objects can now be compared. The Matcher uses a
weight model to compare objects. Finally, if an object does not have a matching object in
the metabase already, it is directly inserted into the metabase. If, however, a matching
object is found, a set of integration rules is used by the Integrator to integrate the two
objects and the metabase is updated.

7. Resource Modeling

In addition to creating a Resource Agent for each resource to be added to the system, a
declarative description (model) of the resource is also created. Information sources in
InfoQuilt are described in terms of the corresponding ontologies. This approach has the
advantage that adding and removing sources to the system dynamically is very easy since
it does not affect the ontologies or other resources. The resource models used in InfoQuilt
capture the characteristics of the data provided by the resources and its query capabilities.
The resource model consists of a list of attributes, binding patterns (BP), data
characteristic (DC) rules, and local completeness (LC) rules.

7.1 Resource Attributes

Resource attributes are attributes for which the resource can provide values. Since the
way the resource models its data can be different from the ontology of the domain, the
data needs to be mapped after it is retrieved. This allows for interoperability between
sources with heterogeneous data [Gun0O0] and is done by the Resource Agents.
Additionally, since the ontology is ideally a comprehensive perception of the domain, it
is common to come across resources that supply only a part of the information. In other
words, a resource may not provide values for all the attributes. The resource’s description
therefore lists the attributes for which it can provide values . For example, consider the
resources SignificantEarthquakesDB and EarthquakesAfter1990 for the class
Earthquake.

SignificantEarthquakesDB (eventDate, description, region,
magnitude, latitude, longitude,
numberOfDeaths, damagePhoto);

EarthquakesAfter1990 (eventDate, region, magnitude,
numberOfDeaths, damagePhoto);

We will use the notation above to represent resources.

7.2 Binding Patterns (BP)

Some web sources have a limited query capability. This is supported by allowing users to
search based on some attribute(s) or combinations of attribute(s). These web sources
require that values for some attributes be provided to retrieve any information from the
resource. The source can be queried only by specifying values for those attributes. For
example, a user can query a site providing information about movies by actors, director,

18

Technical Report, LSDIS Lab, University of Georgia, March 2002.

title, etc. Such query limitations and characteristics of resources are important to consider
while processing an IScape. These are represented in the resource models as a set of
binding patterns (BP). A BP is a set of attributes that the system must be able to supply
values for in order to query the resource. If the resource has several BPs, the system can
select the most appropriate one. The values for the BP can be obtained from the query
constraint or provided by some other resource(s).

For example, consider the F1ight ontology that represents a flight from one city to
another within United States. Most web sites for air travel reservation have forms that
require the user to specify source, destination, dates of travel, etc. One or more
combinations of values could be required as input for the web site to obtain any useful
information. One of the possible combinations of BP could be:

[fromCity, fromState, toCity, toState, departureDate]

7.3 Data Characteristic (DC) Rules

Data characteristic (DC) rules are similar to domain rules. However, they apply only to
the specific resource. Consider the Air Tran Airways web site as a resource for the
Flight ontology. Flight models a direct flight from one city to another within US. We
know that the AirTran Airways web site provides information about only the flights
operated by AirTran Airways. This characteristic of the resource can be represented by a
DC rule:

AirTranAirways (airlineCompany, flightNumber, fromCity,
fromState, toCity, toState, departureDate,
fare, departureTime, arrivalTime,

[dc] airlineCompany = “AirTran Airways”,
[fromCity, fromState, toCity, toState,
departureDate]);

We use [dc] and [Ic] to distinguish data characteristic (DC) rules from local completeness
(LC) rules. LC rules are described in section 7.4.

Knowledge about the data characteristics of a resource can be useful for the system to
predict whether a resource will provide any useful results for a particular IScape. It can
also be used to optimize the query plan by eliminating a constraint if it can be deduced
that the constraint will always be true for all the data retrieved from that resource.
Consider the following query using the ontology F1ight.

“Find all the flights operated by Delta Airlines from Boston, MA to Los Angeles, CA on
February 19, 2001.”

Clearly, airTranairways will not provide any information about a Delta flight. The
system can use this knowledge to deduce that the resource airTranairways should not

be used to answer this [Scape.

Now suppose the user modifies the query to look for flights operated by AirTran
Airways. This time the system knows that it can use AirTranAirways. Additionally, it

19

Technical Report, LSDIS Lab, University of Georgia, March 2002.

can also eliminate the check for “flights operated by AirTran Airways” since all flights
available from airTranairways site are known to be operated by AirTran Airways.

7.4 Local Completeness (LC) Rules

A local completeness (LC) rule on a resource has the same format as a DC rule. But it has
a different interpretation. A characteristic of web sources is overlapping and incomplete
information. Hence, using just one source to answer an IScape in many cases does not
guarantee retrieval of all the possible information. The general approach to this solution
has been to use all the sources (for that domain) and compute a union of the results
retrieved from all of them to provide maximum possible information to every request.
However, it is also possible to find sources that do provide complete information about
some subset of the domain. LC rules are used to model this. They specify that the
resource is complete for a subset of information on a particular domain. In other words,
the information contained in the resource is a// the information for the subset (specified
by the rule) of the domain. Hence, the system cannot retrieve any additional information
(for that subset) by querying other sources. For example, consider the AirTranAirways
resource used earlier. We know that information about all flights operated by AirTran
Airways will be available from it. It is thus locally complete for all flights with
airlineCompany = “AirTran Airways”.

AirTranAirways (airlineCompany, flightNumber, fromCity,
fromState, toCity, toState, departureDate,
fare, departureTime, arrivalTime,

[dc] airlineCompany “AirTran Airways”,
[lc] airlineCompany = “AirTran Airways”,
[fromCity, fromState, toCity, toState,

departureDate]);

Now, any information request that needs only the subset of flights that are operated by
AirTran Airways can use only AirTranAirways to retrieve data about all such flights.
This would be faster than querying all sources available for F1ight.

8. Planning and Optimization

As stated previously, an IScape is specified in terms of the components of the
knowledgebase of the system such as ontologies, relationships, operations, etc. The
system needs to then translate it into an execution plan that specifies exactly which
resources should be used to answer the IScape, how are they to be queried, and how is the
information retrieved from these resources to be integrated. As mentioned earlier, the
Planning Agent is responsible for this. This section describes the process of creation of
these execution plans, given an [Scape. A detailed discussion appears in [PS01]. Consider
the following example IScape.

Example:

We use the classes NuclearTest and Earthquake for this IScape. An inter-ontological
relationship “NuclearTest Causes Earthquake” exists between them. The following
are their specifications in the knowledgebase.

20

Technical Report, LSDIS Lab, University of Georgia, March 2002.

NuclearTest (latitude, longitude, eventDate, description,
testSite, conductedBy, explosiveYield, bodyWaveMagnitude,
latitude >= -90, latitude <= 90,
longitude >= -180, longitude <= 180,
bodyWaveMagnitude > 0, bodyWaveMagnitude < 10,
testSite -> latitude longitude);

Earthquake (latitude, longitude, region, eventDate, description,
damagePhoto, numberOfDeaths, magnitude,
latitude >= -90, latitude <= 90,
longitude >= -180, longitude <= 180);

NuclearTest Causes Earthquake:
<= dateDifference(NuclearTest.eventDate, Earthquake.eventDate) < 30
AND distance(NuclearTest.latitude, NuclearTest.longitude,
Earthquake.latitude, Earthquake.longitude) < 10000

Following are the specifications of the information sources available to the system for
these two ontologies.

NuclearTestsDB(testSite, explosiveYield, bodyWaveMagnitude,
testType, eventDate, conductedBy,
[dc]lbodyWaveMagnitude > 3,

[dc] eventDate > “January 1, 1985”);

NuclearTestSites(testSite, latitude, longitude);

SignificantEarthquakesDB(eventDate, description, region,
magnitude, latitude, longitude,
numberOfDeaths, damagePhoto,

[dc] eventDate > “January 1, 1970”7);

NuclearTestsDB is a database of nuclear tests with a seismic body wave magnitude > 3
on the Richter scale and conducted after January 1, 1985. This is a local metabase created
by extracting information about nuclear tests from several web sources such as a catalog
compiled by Oklahoma Geological Survey Observatory [Okl], Trinity Atomic Web Site
[Tri], and some others. The resource NuclearTestSites contains exact locations of nuclear
test sites as their latitudes and longitudes. SignificantEarthquakesDB is also a local
database created by extracting information from several web sources such as the USGS
web site [USGS]. It has information only on earthquakes that occurred after January 1,
1970. The IScape to be processed is the following.

“Find all nuclear tests conducted by India or Pakistan after January 1, 1995 with a
seismic body wave magnitude > 4.5 and find all earthquakes that could have been caused

due to these tests.”

The Planning Agent uses the following rules to select the resources that are relevant to
answer the IScape for each class in the [Scape.

e Locally Complete Sources

21

Technical Report, LSDIS Lab, University of Georgia, March 2002.

First it makes use of the local completeness rules of the resources. If there exists a
resource that is locally complete for some subset A of the domain of the ontology
such that the part of the IScape’s result that belongs to that domain is a subset of
A, using only this resource for the domain is sufficient. Other resources need not
be used (unless the selected resource has some attributes missing or has a binding
pattern) since the local completeness condition implies that using any additional
sources will not provide any extra information. A semantic optimization that is
performed while using this rule is that the DC rules on the locally complete
resource should not falsify the IScape’s constraint. If it they do, then it implies
that the IScape is semantically incorrect. No resources in this example are locally
complete. So, we cannot apply this rule.

Non Locally Complete Sources

If a locally complete source could not be found, then the planner cannot be sure
that all possible answers to the IScape can be found using the available sources.
However, we would want to retrieve as much information as possible from them.
It therefore considers all the resources that it can use. Again, it can make use of
DC rules to prune sources that will not return any useful results.

For the ontology NuclearTest, there are two resources. It selects both and applies
the condition to them. No resources are eliminated as their DC rules do not falsify
the IScape’s constraint. Similarly, significantEarthquakesDB, the only
available resource for Earthquake ontology, is selected. The DC rule on it does
not falsify the IScape’s constraint. However, consider a slight modification to the
example. If the resource NuclearTestsDB provides data for tests conducted before
January 1, 1985, then its DC rule would falsify the IScape’s constraint. This is
because the IScape is querying for tests after 1995. In this situation, the planner
eliminates NuclearTestsDB from the list of sources that are to be used to answer
the IScape since it will not provide any data useful for the IScape.

Binding Patterns

For the resource(s) selected, the planner needs to ensure that their query capability
limitations (binding patterns) are respected. If a resource has binding pattern(s)
associated with it, the plan needs to specify how the values for the binding pattern
attributes will be supplied. There are three possible ways to do this.

o The values can be supplied from the IScape constraint directly.

o The values can also be supplied from attributes in other classes.

o If either of the above two cases is not possible, then we can use another
resource of the ontology as an associate resource with this one, to supply
values for its binding pattern attributes. We will refer to the resource with
the binding pattern as the primary resource.

First, the planner tries to use the first method since it is the simplest and the
fastest. If, however, the IScape constraint is unable to provide specific values for
all attributes, it can make use of a sub-condition such as “A.a = B.b” in the
constraint where A and B are classes and a and b are their attributes. If a resource

22

Technical Report, LSDIS Lab, University of Georgia, March 2002.

for ontology A is bound on the attribute a, the values retrieved for attribute b can
be provided as binding pattern values to query it. If these two techniques cannot
be applied, the planner can make use of an associate resource. The associate
resource is another resource of the same ontology. Figure 5 shows how an
associate resource can be used to retrieve values for binding pattern attributes.
Suppose A, B, C, D, E and F are attributes of a class. The primary resource has a
binding pattern on attributes A and B. A Binding Pattern Supplier (BP Supplier)
node is used in the plan to retrieve arbitrary values for these attributes from the
associate resource. These values are then used to query the primary resource. This
technique allows us to use the primary resource to answer the IScape, which
would not have been possible otherwise.

BP Supplier
All attributes BP attributes BP attributes
(A. B, C. D) (A, B) (A, B)
Primary resource Associate resource
A, B.C.,D A,B,.C.EF

[A. B]
Figure 5: Use of associated resource to supply binding pattern values

For our example, none of the resources selected have binding patterns. Hence, this rule
does not apply.

Associate resource to supply values for missing attributes

The resources selected should be able to provide all the attributes that the IScape
needs. However, it is very common to come across resources that do not. If a
resource has one or more missing attributes, the planner can use the functional
dependencies defined for the ontology, involving all the missing attributes to see
if it can couple it with some associate resource to retrieve values for those
attributes for as many entities as possible. This is done by equating the values of
attributes appearing on the LHS of the FD to join the data retrieved from the main
resource with that from the associated resource. Without the knowledge about the
FD, it would not be possible to form a plan that can thus deduce more information
about entities using multiple resources in conjunction.

Join (using LHS attributes) | Friman-E = Associate.B AND

Primary.C = Associate.C

All available attributes LHS attributes + missing attributes
(A.B.C.,D) BC ->DEF (B.C.E. F)
Primary resource Associate resource
A.B.C,D A.B.C.E.F

Figure 6: Use of Functional Dependency to retrieve values for missing
attributes

23

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Figure 6 illustrates this. The primary resource has two missing attributes — E and
F. We use the functional dependency BC -> DEF defined on the class that the
primary resource provides information for.

The attributes are equated using a default equality computing function defined for
it in the function store or an exact match if no function was defined. The use of
functions is necessary as it is highly unlikely that all sources will have exact same
values for the attributes (syntactic heterogeneity) [Gun00]. For example, a nuclear
test site available from one source could be “Nevada Test Site, Nevada, USA”
and that from another source could be “Nevada Test Site, NV, USA”. The two are
semantically equal but syntactically unequal [SK93]. In Figure 6, it is assumed
that no default equality function is available for attributes B and C.

If a FD or an associate resource could not be found, then the resource with the
missing attributes cannot be used.

The attributes that the [Scape uses (including the attributes that we project on and those
needed to evaluate relationships and constraints) are:

(NuclearTest.testSite, NuclearTest.explosiveYield,
NuclearTest.bodyWaveMagnitude, NuclearTest.testType,
NuclearTest.eventDate, NuclearTest.conductedBy,
NuclearTest.latitude, NuclearTest.longitude,
Earthquake.eventDate, Earthquake.description,
Earthquake.region, Earthquake.magnitude,
Earthquake.latitude, Earthquake.longitude,
Earthquake.numberOfDeaths, Earthquake.damagePhoto)

NuclearTestsDB has two missing attributes — latitude and longitude. The planner
uses the FD “testsite -> latitude longitude” to retrieve their values using
NuclearTestSites as an associate resource. The function testSiteEquals from the
function store is used to equate the values of testsite from the two resources. Similarly,
for NuclearTestSites, all attributes except testSite, latitude, and longitude are
missing. However, there is no FD that can be used to retrieve values for these missing
attributes using an associate resource. So, we eliminate it as a primary source.

Notice that the execution plan may need to use a source more than once. For example, a
source could be used as a primary resource as well as an associate resource. However, it
need not be accessed twice if it does not need any binding patterns. The Planning Agent
identifies such resources and optimizes the plan by creating a single Resource Access
node that retrieves all the information (attributes) needed. Every node in the plan that
needs information from this resource then points to this Resource Access node.

Figure 7 shows the execution plan created for the IScape. The sub-conditions that the
nuclear test should be of a magnitude > 4.5 and that the test should have been conducted
by either India or Pakistan are moved down to the resource as shown. This is a standard
optimization technique used in all databases as well

24

Technical Report, LSDIS Lab, University of Georgia, March 2002.

MuclearTest.testSite, NuclearTest.eventDate, NuclearTest.testType,
Muclear Test.explosive Yield, NuclearTestswave Magnitude,
Muclear Test.conductedBy, Eathquake.eventDate, Earthquake region,
Earthguake.description, Earthquake .magnitude,
Earthquake.numberQOfDeaths, Earthquake .damagePhoto,
dateDifference(NucleraTest.eventDate, Earthquake.eventDate),
distance(NMuclear Test.latitude, Nuclear Test.longitude,
Earthquake.latitude, Earthquake .longitude)

Relationship Evaluator

MuclearTest causes Earthquake

dateDifference(NuclearTest.eventDate, Earthquake.eventDate) = 30

AND

distance(Nuclear Test.latitude, NuclearTest.longitude,
Earthgquake,latitude, Earthquake .longitude) = 10000

dateDifference(“"January 1, 1995",
MuclearTest.eventDate)= O

Function Evaluator

dateDifference(“January 1, 1995",
MuclearTest.eventDate)

testSiteEquals
NuclearTestsDB.testSite,
NuclearTestSites.testSite)

MuclearTestavaveMagnitude = 4.5 AND
(NuclearTest.conductedBy = "India™ OR
MuclearTest.conductedBy = "Pakistan®)

Resource Access

Resource Access Resource Access

NuclearTestsDB NuclearTestSites SignificantEarthquakesDB
eventDate, description,
testSite, explosive Yield, testSite, region, magnitude,
waveMagnitude, testType, latitude, latitude, longitude,
eventDate, conductedBy longitude numberQfDeaths,
damagePhoto

Figure 7: Execution Plan for IScape

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Next, the planner determines the steps needed to integrate the data retrieved from these
resources. As seen in Figure 7, for this example, it creates an intermediate union for each
ontology. This intermediate union is to integrate the data from all resources used in the
plan such that they do not need any binding pattern values supplied from attributes of
other ontologies. In this example, all resources fall in that category. This union node is
eliminated only if no such resource exists in the plan and is needed to avoid deadlocks
that may potentially occur when resources retrieve values for their BP attributes from
other classes. For details, see [PSO1].

Next, the remaining sub-conditions involving attributes of a single ontology are
evaluated. Here, the check if nuclear test was conducted after 1995 is such a sub-
condition. Next, the data retrieved from the sources for all ontologies is related with each
other using the specifications of the inter-ontological relationships. This may involve
evaluation of functions. Next, all the remaining sub-conditions in the IScape’s constraint
should be evaluated. These sub-conditions are those that involve attributes of more than
one ontology. They can now be evaluated since the information sets for all ontologies are
now integrated. There are no such conditions remaining in this example. Next, all
groupings and aggregations are computed. Again, this example does not need any.
Finally, the result set should be projected on the attributes, function values, and
aggregations in the projection list of the IScape.

9. IScape Execution and Monitoring
This section discusses the processing of IScapes and how it can be monitored.

9.1 IScape Processing

The User Agent is the entry point for the IScape in the system. The User Agent passes the
IScape to the Broker Agent. The Broker Agent starts the processing of the IScape by
coordinating the other agents. It first asks the Planning Agent to create an execution plan.
The Planning Agent interacts with the Knowledge Agent (through the Broker Agent) to
access information about domains, relationships, operations involved in the IScape and
the resources available in the system for those ontologies. It creates an execution plan as
described in section 8 and sends it back to the Broker. The Broker then sends the plan to
the Correlation Agent, which is responsible for executing it. The final results compiled
after executing the IScape are finally returned to the Broker and then the User Agent.

The execution of the plan in the Correlation Agent is multi-threaded and parallel. The
Correlation Agent starts by creating a node processor for each node in the execution plan.
Each node processor is a thread. The IScape processing is started by starting the node
processor for the root node in the plan. Each thread first starts all the node processor
threads from which it expects some input and waits for them to finish. Once all the inputs
are ready, the node processor starts its own processing. Thus, nodes are evaluated as and
when their input data becomes available. The processing is thus done in parallel. For
example, the first step is usually to query the resources. All resources that do not need
any input from other resources (for binding patterns) are queried simultaneously.

9.2 IScape Processing Monitor (IPM)

26

Technical Report, LSDIS Lab, University of Georgia, March 2002.

The processing of the IScape can be monitored using a graphical toolkit called the IScape
Processing Monitor (IPM). Every agent sends detailed logs to the IPM to inform its
status. For example, the Planning Agent sends detailed log messages that indicate the
results of various stages of planning algorithm (e.g. selection of sources for a class). The
log messages include a time stamp, a brief message, a detailed message and possibly
some associated data. For example, as soon as the Planning Agent generates the plan, it
sends it to the monitor. Similarly, the Correlation Agent sends the intermediate results
generated by each node processor to the monitor. The log messages are displayed as
color-coded entries in a table. Figure 8 shows a screenshot of an IPM after execution of
an IScape. The IPM provides the following benefits:

e It helps in monitoring the execution of the IScape as it proceeds and localize any
failures easily.

e The detailed log messages generated by the various agents describe in
considerable detail exactly what is going on during processing. IPM is therefore
extremely useful as a high-level debugging tool. The availability of temporary
results generated at all stages of execution of the plan in the Correlation Agent
also helps in this.

e The availability of time-stamps with all the log entries allows us to evaluate
which phases of the IScape processing are taking the most time. This helps us
evaluate our system better and identify areas that need improvement.

[E3 1S cape Processing Monitor M=
IScape Find all nuclear tests conducted by India or Pakistan after January 1, 1995 with seismic body wave magnitude > 4.5 and find all earthquakes that could have been caused dul

Processing Log :

ge ld | Time Stamp M ge From Brief M. g
020:29:14.484 User Agent Started processing
120:29:14.671 Broker Agent Started processing
220:29:15.046 Planning Agent “ipplied Domain Rules to IScape's constraint
320:29:15.109 Planning Agent Checking IScape's constraint and relationshi...
420:29:15.187 Planning Agent Selecting sources for Earthyuake
:29:15.234 Planning Agent Selecting sources for Nuclear Test
:29:15.453 Planning Agent Plan created by the planher. Returning it to Br...
TR20:2%:15.578 Broker Agent Received plan from planner
820:29:15.843 CorrelationAgent Executing IScape
920:29:16.390 TestSitesDB Resource Agent Queried TestSitesDB
. igni -ar DB R Agent Queried SignificantEarthyuakesDB
Correlation Agent Computed Union
NuclearTestsDB Resource Agent Queried NuclearTestsDB
CorrelationAgent SelectNodeProcessor done processing
Correlation Agent Evaluated Join
1520:29:17.046 Correlation Agent Computed Union
1620:29:17.250 Correlation Agent Evaluated functions on a relation.
1720:29:17.359 CorrelationAgent SelectNodeProcessor done processing
1820:29:17.750 Correlation Agent Evaluated Relationship on a set of relations
1920:20:17.765 Correlation Agent Fvaluated projection on a relation
2020:29:17.796 Broker Agent Received IScape results from Correlation Ag...
21 20:29:17.937 User Agent Returning final result to client
Detailed Log Message | ‘ Show Associated Data

Figure 8: IScape Processing Monitor (IPM)

10. Graphical Tools

We now describe different graphical toolkits available to the user and interfaces to create
and execute IScapes. These include the KnowledgeBuilder, which is used to create the
knowledgebase of the system, the IScapeBuilder, a stand-alone client used to create and
execute IScapes and a web-based interface that can be used to execute pre-defined
IScapes. Additionally, InfoQuilt also provides an IScape Processing Monitor (IPM) as
described earlier in section 9.2.

27

Technical Report, LSDIS Lab, University of Georgia, March 2002.

10.1 Knowledge Builder (KB)

The KnowledgeBuilder (KB) is an easy-to-use intuitive graphical tool to help an
administrator create the specifications of domains (ontologies), inter-domain
relationships, operations (functions and simulations) and the available information
sources. These form the knowledgebase of the system as discussed in previous sections.
Use of the KB has the following advantages:

e The administrator does not need to know the format of the XML specification
used by the system internally to represent ontologies, relationships, functions, and
resources. The KB abstracts the administrator from the technical details of the
formats used internally by the system.

e It provides tools that help the user relate the information in the knowledgebase in
a better way. For example, the user can look at the entire knowledgebase (except
for function specifications) as a graphical tree that lists all the ontologies defined
in the system, their details including rules and FDs defined on them, relationships
involving the ontology with their characteristics and resources available for the
ontologies with their details like the attributes they supply, the data characteristic
rules, the local completeness rules and the binding patterns that they need. It can
thus provide a comprehensive graphical view of the entire knowledgebase.

Ega Knowledge Tree E

K ledyge of the system repn ted as a tree

P éEarthquake
Y eventDate
=) description
29 magnitude
Gy longitude
Y image

-

=) region

Y deaths

D latitude

Rule magnitude GREATERTHAN 0
Lo §) SignificantEarthquakesDB
Lo " HuclearTestCausesFarthguake

? Q NuclearTest

Y testSite

) bohwWaveMagnitude

=D explosiveYield

Y eventDate

Y testType

) conductedBy

=} longitude

Y latitude

FD (iestSite) > (longitude)latitude)

Rule hodyWaveMagnitude GREATERTHAN 0

Ll

© ontonogy @ Relationship DC Data Characteristic Rule
e Attribute e Condition LC Local Completeness
Rule pomain Rule 8) Resource
FD Functional Dependency BP Binding Pattern

Back

Figure 9: Knowledge Tree

e It helps the administrator in maintaining the knowledgebase and making
modifications correctly. For example, suppose an attribute from an ontology needs to
be removed. The KB will not allow this if the attribute appears in (a) a rule on the

28

Technical Report, LSDIS Lab, University of Georgia, March 2002.

ontology, (b) a FD on the ontology, (c) set of attributes provided by some resource,
(d) a data characteristic rule on a resource, or (¢) a local completeness rule on a
resource or (f) a binding pattern on a resource. The user is required to individually
take care of any such undesirable condition (the KB itself can be used to do this)
before removing the attribute. If the knowledgebase is huge, it may be a tedious and
error-prone task to go through the specifications of all these to find where the
attribute is being used. Even worse, the user would have to go through the XML
specifications in the absence of a tool like KB to correctly make the modification.
Using the graphical tree display provided by the KB (Figure 9), the user can easily
locate such uses of the attribute.

10.2

IScape Builder (IB)

The IScape Builder (IB) is a stand-alone Java application that provides a graphical
interface to create and execute [Scapes. IB provides the following benefits:

It provides a simple and intuitive interface that allows the user to create and
execute [Scapes in a step-by-step manner.

The user does not need to be aware of the XML representation used internally by
the system to represent IScapes.

It is integrated with the knowledgebase of the system. The user therefore does not
need to look it up to create new IScapes. For example, the user can easily select
from the names of ontologies, relationships, and functions that appear in drop
down lists.

It implements basic validity checks during [Scape construction.

It can provide various tools to help users better analyze the results of the IScapes.
For example, the current version of the IB provides a charting tool, which allows
the user to create charts to analyze the results. Tools like the IB can also
additionally be designed to present data in a more intuitive format specific to
particular domains. For example, if the only domains of interest are related to
geography, many of them are likely to have a geo-reference indicating exact
location on the earth. A more intuitive and appealing way of presenting this
information could be via a map of the world with the exact location pointed out
using a marker symbol. However, such tools are highly contextual and are not
suited as a general technique.

Figure 10 shows the first in a series of five steps involved in the IScape creation and
execution process. This step enables the user to select the ontologies that he/she wants
the IScape to use. In addition this step also allows for the selection of the
relationships that the user wants to exploit.

29

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Eﬂj IScape Builder

=] E3
fstem |/Step2 |/Step3 rstepd ep5 Run |
] Specify all the oniologies and relationships to he used in IScape
| MNew IScape || Open IScape || Save [Scape || Clear IScape || Delete IScape |
Statement |5 and find all earthguakes that could have been caused due to these tests|

Description Find all nuclear tests conducted by India or Pakistan after January 1, 1995
ith seismic body wave magnitude = 4.5 and find all earthquakes that
could have been caused due tothese tests

Oniologies Oniologies in IScape

ExcludedAreas Earthgquake

UrbanRoads MuclearTest

DirectFlight Remove
Slope

test =

Relationships Relationships in IScape
MuclearTestCausesEarth MuclearTestCausesEarth
EarthguakeCausesTsung

EarthquakeAffectsEnviron Select Remove
< [» < [»

Figure 10: IScape Bui

Ider Step 1

The second step (Figure 11) enables the user to specify functions that operate on the
attributes of the Ontologies used in the [Scape. This step can also be used to specify

aggregate operators on attributes needed to support the query using the IScape.

Egj I5cape Builder

(Stem rstepz rStepﬁ rstepd rstepﬁ Run |

Specify all the functions and aggregates to he used in IScape

|| Function Name |clarkelgm -]

Parameters =Intener spread= |~

' =Integer hreed=

: =Integer roadGravity=
! zintener diffi=ion

[¥] Atiribute Parameter

4]

I[=] E3

Functions in IScape

diffinDays(1 995, January, 1 Muclea
diffinCays(MuclearTest eventDate B
distance(Earthguake latitude MNucle

Atiribute [Earthguake.eventbate v |

Yalue D
| Set Parameter | | Unset Parameter | | Add | | Remove |

Aggregates in IScape

! [¥] stiribute Agzregate

Function

il [Earthguake.eventbate v |

Aggregate Type | ayg v

Figure 11: IScape Builder Step 2

30

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Figure 12 shows the third step in the IScape creation process. This step enables the
user to specify the conditions that make up the structure of the IScape. The basic
conditions are conjoined to form the IScape.

v:a IScape Builder N]
[Step1 [Skip2 [Step3 | Stepd | Steps [Run |

Specify the consiraint and the run-time configurable parametiers to be used in IScape
| Consiraint Bagic Conditions {Or-ed)

@ Attrihute |Earthquake.everrtDate -

) Function | difinDays(1995, Januar... ¥ |

: Operator |EQU.0.LS - | ’m

(@ Attribute |Earthquake.everrtDate ~| Or Conditions (And-ed)
{MuclearTest bodyWaveMagnitude GREA*
{7 Funetion |d'rfﬂnDays{1995, Januar... ¥ | |ijew or conditions P

| (difinDays(1995, January, 1 NuclearTesw |
| Ovale | | N B

H

| Add Basic Condition | Remove

Condition

| India) AND ({difinDays(1885, January, 1 MuclearTest eventDate) GREATERTHANEQUALS
03 ARD ({MuclearTest hodwavebagnitude GREATERTHAR 4 8%

-
-

Runtime Configurahle Parameters Buntime Configurahle Parameters in IScape

® Atrhuie |Earthguake.eventDate v | |Earhquake eventDate

() Function | difinDays(1995, Januar... ~ |

Al | [Remoe |

Figurel2: IScape Builder Step 3

The fourth step shown in Figure 13 allows the user to specify additional constraints
on the way the result of the [Scape query should be grouped and what constraints
apply to the members of the group.

The fifth step in the IScape creation process (Figure 14) enables the user to specify
the runtime projection parameters. This is analogous to projecting an attribute of a
relation in relational algebra. An example [Scape specified in an XML file, which
results from this five-step process, is shown in Appendix A.

After the creation process the user can run the IScape. The results are displayed as
shown in Figure 15. It is possible to apply charting, filtering or visualization
operations over the projection parameters.

Technical Report, LSDIS Lab, University of Georgia, March 2002.

E’g’;; IScape Builder

tep1 rStepZ rStepZi rStep4 rStepS Run |

Specify the group consirainis and group by parameters to be used in IScape

| Group By Group By Parameters in IScape
| @ Atmibute | Earthquake.eventDate v |
|| Functon |diffinDays{1995, Januar... ¥ |
, [83 | [Remove |
Group Constraint Bagic Conditions (Or-ed)
| Agmegate | M
Operator [EQUALS v|
I
® Agaregate | hd | Remove
71 Atirdhuie | — | Or Conditions (And-ed)
=Mew Or Candition=
| i) Function | hd |
O Value | |
| Add Basic Condition | Remove
Condition
Figure 13: IScape Builder Step 4
EiScape Builder — I M |

fS’tem rStep2 rstepS rStep4 rstepﬁ Run |

Set the runtime parameters and projection parameters of the IScape

| Add Projection Parameter Result parameters of the IScape
| @ Atirihute |Earthquake.everrtDate hd | Earthguake. eventDate
| o |d'rfﬂ Days(1995, J | distance(Earthguake latitude Muclea
| i nl anuar.. ¥
: v e 2 Earthguake.image
i ") Aggregate | - | MuclearTest conductedBy
! diffinDays(MuclearTest eventDate Ea Z
Runtime parameter Operator Value
[Earthquake.eventate ~| [EQuALS -] | |
|
| Add Basic Condition |
Basic Conditions (Or-ed) Or Conditions (And-ed)

=Mew Or Condition=

Condition

Figure 14: IScape Builder Step 5

32

Technical Report, LSDIS Lab, University of Georgia, March 2002.

E""-IScape Builder S—— M=
i rStElﬂ rStepZ rStepS rstepd rStepS Run |

| Run the IScape and draw charis on the results Run IScape [¥] Monitox
|

Chart |Earthquake.r... v| v |Earthquake.... v| ® Bar _' Line Display

: Result

| Earthquake...IEarthquake...]NucIearTes...|NucIearTes...|NuclearTes...|NucIearTes...|diStance(Ea..

i 5.5/Egypt, Cair... |India, Raja... 4.7 India 4,678,239

| 5.5/Egypt, Cair... |Pakistan, C.. 4.7 Pakistan 442711

] 5.6/ China, Sou... [India, Raja... 4.7 India f,336.86
5.6/China, Sou... |Pakistan, C.. 4.7 Pakistan 5,334,547
B .9|Afghanista... |India, Raja... 4.7 India TE0.841
B.9/Afghanista... |Pakistan, C.. 4.7 Pakistan 709.84
B 9|Afghanista... |Pakistan, .. a2 Fakistan 820285
6.2 Turkey, sou...|Pakistan, ... 5.2 Pakistan £,638.76

Figure 15: IScape Result Window

10.3 Web-Accessible Interface to Execute IScapes
InfoQuilt also provide a web-accessible interface that provides a learning environment
and allows execution of already defined IScapes (see Figure 16).

L P af a] =] 5~ = = o
Step Beiresh Home Search Faventes Htery Hoil =0 Distuss Vahoo! M., Hessenger

Ao [g ran g £du-DDBser ” SVt SCausingQuekes =] oo
Links &) Cuttornize Linke] Fras Motmail @] Windows Madin] Windows &) 0va(TH) 2 Elatharm, ies, v1 2.2 ABY i sharti tn indas hired "
Result2 =l
Earthquake.maguitude 55

Eanthaquake.iegion

MuclnaTost.tastSite

yWaveMagnitude

HuclearTestexploshoeYleld
MuelnarTos condiets dby
distance

datitude Huclea Testlativade Earthquake.longinde Huclea Testlenginde)
[

Result3
Earthquak

Chana, South Xiniang

uctoarTost tastSioe Trudia, Ragethian, Peikaran et site
HucloarTust.bedyWaveMagninde ar

HuclearTostexplesheleld M

el arTos condiets dby Trdia

distance S BA0E
datitude Huclea Testlativade Earthquake.longinde Huclea Testlenginde)
17

e
1Tost.aventllate L anhquaks.svantData)
te

Maultianadia [Eanhguaks. image)

i sk -

210w Ll L

Figure 16: Sample Result Page using Web Interface to Execute IScapes

e The interface being web-accessible can be used from anywhere. However, it only
allows execution of existing IScapes. It does not allow users to create new
[Scapes.

e [t describes the entire knowledgebase of the system that helps the users in
understanding the domains that are modeled by the ontologies, how the ontologies
are related to each other in complex ways (inter-ontological relationships like
affects, causes, etc) and the functions and simulations available in the system.

33

Technical Report, LSDIS Lab, University of Georgia, March 2002.

11. Related Work

Most direct lineage of the InfoQuilt system to the past research is the areas of in
information integration and semantic interoperability. Better known examples of
heterogeneous data access and information integration systems include SIMS/ARIADNE
[AK97, AKS96, KMA+01], TSIMMIS [CMH+94], Information Manifold [LRO96],
GARLIC [HMN+99], InfoHarness [SS99] and HERMES [SAB+01,AE95]. An example
of a system that investigated processing of queries involving multi-ontologies is
OBSERVER [MIKS00]. The goal of InfoQuilt is to provide an environment where users
can query, analyze, reason about inter-domain relationships and analyze data available
from multiple sources (including web-based sources). However, most other systems focus
only on retrieving and integrating data from multiple sources and not on the “exploring,
understanding, and knowledge discovery” aspects. The following are the features of
InfoQuilt that are not supported by any other systems:

e Ability to assist in discovery involving complex domain-specific relationships
that may involve multiple ontologies

e Support for use of functions and simulations to post-process and thereby add
value to data that is retrieved from the resources

e Support for complex relationships and constraints that cannot be expressed using
relational and logical operators

e Powerful semantic query interface (IScapes)

The general approach of most of the systems is to model the domains and available
information sources. They then use these models to translate a query specified by the user
into an execution plan that specifies the relevant data sources that will be used and how
information retrieved from them will be integrated. We compare our vision and approach
with other systems with respect to the key features or focus of those systems below.

SIMS [AKS96], and its follow on ARIADNE [KMA+01] adopt the approach of creating
a model of the domain using a knowledge representation system establishing a fixed
vocabulary and accepting queries specified in the same language. However, its mediator
is specialized to a single application domain [AHK96]. InfoQuilt supports multiple
ontologies that may be completely independent of each other. An application domain in
SIMS models a single hierarchy of classes. It also does not support inter-ontological
relationships and functions. They do not consider use of local completeness information
about sources and support only one binding pattern per web resource.

OBSERVER [MKSI96, MIKS00] uses ontologies to describe information sources and
inter-ontology relationships like synonyms, hyponyms and hypernyms across terms in
different ontologies to be able to translate a query specified using some ontology that the
user selected into another query that uses related ontologies describing relevant
information. This approach of using relationships to achieve interoperability between the
sources is interesting. However, it is limited to basic relationships, primarily “is-a” as
supported in description logic. InfoQuilt supports model complex relationships that may
span multiple, independently developed ontologies.

34

Technical Report, LSDIS Lab, University of Georgia, March 2002.

TSIMMIS [CMH+94, GPQ+95] uses a mediator-based architecture [Wie92]. It uses a
Mediator Specification Language (MSL) to define mediators, encoding how the system
should use the resources. The mediators are then generated automatically from these
specifications. Since the MSL definitions need to be created manually, adding or
removing information sources requires updating them after determining how the sources
should be used to answer the queries and then recompiling them. It has a set of pre-
defined query templates that it knows to answer. User queries are then answered by
relating them to these templates. The query answering system (mediator) is thus query
centric and can answer only a restricted set of queries. InfoQuilt has a dynamic planner
that is not query-centric. It automatically considers newly added sources while planning
IScapes.

Information Manifold [LRO96] uses an approach similar to ours in that the user creates a
world view, a collection of virtual relations and classes. The world view however does
not capture semantics of the domains as InfoQuilt can using domain rules and FDs.
Information sources are described to the system as a query over the relations in the world
view. The user queries are also specified over relations in this world view. The sources
can be specified to be either a subset of the domain or equal to a subset of the domain
[LSK95]. So a resource that is locally complete for a part of information that it provides
cannot be modeled appropriately. This does not capture local completeness information
about the sources precisely. IM uses capability records to capture query capability
limitations of sources. These records specify, among others, a set of input parameters and
minimum and maximum number of inputs allowed. The system then arbitrarily selects a
subset of the set of input parameters with at least minimum number of allowed
parameters in the set. The subset selected is arbitrary. Therefore, the capability records
cannot precisely specify the binding patterns. This approach would not work if the source
needs very specific combinations of attributes as input.

Heterogeneous reasoning and mediator system (HERMES) [SAB+01,AE95] provides a
framework to integrate information and additionally provides automation in various
aspects of integration. Framework uses “Mediatory Programming Environment” (MPE)
to extract and integrate information from various sources while resolving conflicts in a
uniform way. A mediator is a logic program that uses predicates to execute external
programs and contains clauses (subqueries) to express how the knowledge across the
various domains(relational database, object-oriented database etc) is to be integrated. The
framework is very extensible and can accommodate new knowledgebases. However, not
much work has been done towards the development of the semantic foundation and it
does not incorporate the use of web sources.

InfoHarness [SS99], a research as well as commercial system, uses metadata extraction
methods, and provides integrated, rapid access to huge amounts of heterogeneous
information, regardless of type, representation, location, and medium. InfoQuilt’s
metadata extraction capability builds upon that of the InfoHarness system. GARLIC
[HMN+99] focuses on provides ability to support queries specified an object description
language against a integrated schema of wrapped heterogeneous data sources. Neither of

35

Technical Report, LSDIS Lab, University of Georgia, March 2002.

the system provides support for complex relationships or knowledge discovery of the
type we have discussed earlier.

Recent Semantic Web based commercial web products such as the SCORE Technology
from Voquette [SBA+02] and others listed at http:/business.semanticweb.org
increasingly recognize the importance of relationships between semantically related data
from different sources. Some systems even support automatic recognition of domain-
specific metadata based relationships, or semantically relate data by associating data to
large (yet shallow) ontology and using that ontology to establish semantic relationships
between data [App]. These systems do not yet support_complex relationships with
changeable parameters and hence do not support knowledge discovery of the type
InfoQuilt supports.

12. Conclusions
A basic information integration system focuses on accessing multiple heterogeneous and
distributed sources and integrating the data available into a structured homogeneous data
set. Adding support for simple relationships between entities that allow us to relate data
in simple ways takes us to what is referred to as semantic web. Several commercial
systems such as [SBA+02, App] have already achieved this. However, real word entities
are related with each other in much more complex ways. We discussed the importance of
support for such relationships, which takes us to the next step — Knowledge Discovery.
We described the InfoQuilt system, which has the following distinguishing features:

e ability to model complex relationships involving multiple ontologies

e ability to use value-adding functions and simulations

e powerful query interface to describe complex information needs (IScapes)

e platform for specifying and performing human assisted knowledge discovery

This paper discussed our approach to modeling the knowledgebase of the system, which
comprises of ontologies, inter-ontological relationships, information sources and complex
operations including functions and simulations. It described the use of IScapes to
construct and deploy IScapes. Of particular interest was the use of inter-ontological
relationships and functions to answer those requests. Simulations can also be integrated
with the system to perform post-query analysis on the result. This paper also described
how all these features of InfoQuilt are put together to support human-assisted knowledge
discovery. Furthermore, we described the runtime architecture of the system, gave an
overview of the METIS toolkit, which can be used to create an integrated homogeneous
metabase from multiple heterogeneous sources, described how practical execution plans
are created for the IScapes, how an IScape is processed in the system, and how this
processing can be monitored to easily locate failures. We also described a number of
tools with visual interfaces available for the user such as the Knowledge Builder, [Scape
Builder, the IScape Processing Monitor, etc. We described several examples throughout
the paper that have been implemented and tested and explain how InfoQuilt can be used
to better relate, integrate and use the large amount of information which is at our disposal
to learn about domains of interest, their characteristics and their relationships with each
other.

36

Technical Report, LSDIS Lab, University of Georgia, March 2002.

Some of the planned future enhancements are as follows:

Inductive learning can be used to infer domain rules, FDs, and data characteristics
in addition to those already specified by the administrator at the time of
knowledgebase creation.

The Planning Agent can create backup plans that the Correlation Agent can
switch to on failure. The resources available to the system are completely
autonomous. If any of them fails during IScape execution, the Correlation Agent
can switch to a backup plan that could be a slight modification of the original so
as to account for the failure(s).

Simulations are currently supported using the framework used for functions.
Simulation programs however are more complex and diverse in the kind of
application (it could be an executable, a script, etc.), the method of accepting
inputs, for example as files from local file systems, etc. The framework currently
used may not suffice as it assumes that they are available as separate functions
(through wrappers if needed). Several simulations however exist as programs
written using languages supported by special software, for example, ArcInfo, and
hence, maybe difficult to add to the system. Different types of simulation
programs therefore need to be explored more thoroughly to provide a framework
better suited to support a large class of them, if not all.

Acknowledgements

Reviewers’ comments led us to provide more details than what we had provided in the
first version of this paper. We thank for their diligent reviews. We thank David Avant,
Kemafor Anyanwu, and Cartic Ramakrishnan for their assistance in improving the drafts.
InfoQuilt has been a group project. Finally, we acknowledge past contributors, including
Vipul Kashyap, Tarcisio Lima, Clemens Bertram, Krishnan Parasuraman, Kashitj Shah,
Mukesh Guntamadugu, Sriram Lakshminarayan and Narayanan Palsena.

13. References®

[Ade]
[AE95]

Alexandria Digital Earth Prototype. http://www.alexandria.ucsb.edu/

S. Adali and R. Emery. A uniform framework for integrating knowledge in
heterogeneous systems. Proceedings of the FEleventh IEEE International
Conference of Data Engineering (March 1995).

[AHKO96] Y. Arens, C. Hsu and C. A. Knoblock. Query processing in the SIMS

[AK97]

information mediator. In Austin Tate, editor, Advanced Planning Technology.
The AAAI Press, Menlo Park, CA, 1996.

J. Ambite, and C. Knoblock. Planning by Rewriting: Efficiently generating high-
quality plans. Proceedings of the 14th National Conference on Artificial
Intelligence, Providence, RI, 1997.

[AKS96] Y. Arens, C. A. Knoblock, and W. Shen. Query reformulation for dynamic

[App]

information integration. Journal of Intelligent Information Systems, Vol. 6, pp.
99-130, 1996.
CIRCA Technology, Applied Semantics Inc., http://www.appliedsemantics.com

* All URLs are valid as of March 30, 2002.

37

[BBB97]

[Ber98]

[Cla]

[CM97]

[CMH+94]

[Dec01]

[DHM+01]

[FEDC02]

[FHLWO02]

[GPQ+95]

[Gun00]

[HMN+99]

[HGC+97]

[KMA+01]

[KO1]

[Kru95]

[KS00]

Technical Report, LSDIS Lab, University of Georgia, March 2002.

R. J. Bayardo Jr., W. Bohrer, R. Brice, et al. InfoSleuth: Agent-Based Semantic
Integration of Information in Open and Dynamic Environments. In SIGMOD-97,
pp- 195-206, Tucson, AZ, USA, May 1997.

C. Bertram. InfoQuilt: Semantic Correlation of Heterogeneous Distributed
Assets. Masters Thesis, Computer Science Department, University of Georgia,
1998.

Clarke’s Urban Growth Model, Project Gigalopolos, Department of Geography,
University of California, Santa Barbara. http://www.ncgia.ucsb.edu/projects/gig/
M. Califf and R. Mooney. Relational Learning of pattern-match rules for
information extraction. Working papers of the ACL-97 Workshop in Natural
Languages Learning 9-15. 1997.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.
Ullman, and J. Widom. The TSIMMIS Project: Integration of Heterogeneous
Information Sources. Proceedings of 10th Anniversary Meeting of the
Information Processing Society of Japan, pp. 7-18, Tokyo, Japan, 1994,

S. Decker, Inference Engines for the Semantic Web.
http://www.semanticweb.org/inference.html.

G. Denker, J. R. Hobbs, D. Martin, S. Narayanan, R. Waldinger, Accessing
Information and Services on the DAML-Enabled Web

Proceedings of the Second International Workshop on the Semantic Web
SemWeb'2001 Hongkong, China, May 1, 2001

F. Fonseca, M. Egenhofer, C. Davis, and G. Camara. Semantic Granularity in
Ontology-Driven Geographic Information Systems. AMAI Annals of
Mathematics and Artificial Engineering, 2002 (to appear).

D.Fensel, J.Hendler, H.Liebermann, and W.Wabhlster, (Eds). Creating the
Semantic Web. MIT Press, 2002.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.
Ullman, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and
Languages. In Proceedings of NGITS (Next Generation Information
Technologies and Systems), 1995.

M. Guntamadugu. METIS: Automating Metabase Creation from Multiple
Heterogeneous Sources. Masters Thesis, Computer Science Department,
University of Georgia, 2000

L. Haas, R. Miller, B. Niswonger, M. Tork Roth, P. Schwarz, and E. Wimmers,
“Transforming Heterogeneous Data with Database Middleware: Beyond
Integration, Data Engineering Bulletin, 1999.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting
Semistructured Information from the Web. Proceedings of the Workshop on
Management of Semistructured Data. Tucson, Arizona, May 1997.

C. Knoblock, S. Minton, J. Ambite, N. Ashish, I. Muslea, A. Philpot, S. Tejada.
The Ariadne Approach to Web-Based Information Integration. International
Journal on Cooperative Information Systems (IJCIS). Special Issue on Intelligent
Information Systems: Theory and Applications, 10(1/2), pp145-169, 2001.

M. Klein. Combining and relating ontologies: an analysis of problems and
solutions In Workshop on Ontologies and Information Sharing, [JCAI'01, Seattle,
USA, August 4-5, 2001

G. Krupka. Description of the sra system as used for muc 6. Proceedings of the
Sixth Message Understanding Conference (MUC-6) 221 —235. 1995.

V. Kashyap, A. Sheth. Information Brokering Across Heterogeneous Digital
Data — A Metadata-based Approach. Kluwer Academic Publishers, 2000.

38

http://www.ncgia.ucsb.edu/projects/gig/

[KS96]

[KS98]

[Lak00]

[Leh]
[LHLO1]

[LPHO00]

[LRO96]

[LSK95]

[MKSI96

[MIKS00]

[Mus99]

[OK1]

[Pal00]
[Par98]

[PSO1]

Technical Report, LSDIS Lab, University of Georgia, March 2002.

V. Kashyap, A. Sheth. Schematic and Semantic Similarities between Database
Objects: A Context-based Approach - in the VLDB Journal 5 (4), 1996.

V. Kashyap and A. Sheth. Semantic Heterogeneity in Global Information
Systems: The Role of Metadata, Context and Ontologies, in M. Papazoglou and
G. Schlageter (eds.), Cooperative Information Systems: Current Trends and
Directions. Academic Press, 1998, pp.139-178.

S. Lakshminarayan, Semantic Interoperability in Digital Libraries using Inter-
ontological Relationships, M.S. Thesis, Computer Science, Univ. of Georgia,
August 2000.

W. Lehnert. Information Extraction. Natural Language Processing Laboratory,
University of Massachusetts. http://www-nlp.cs.umass.edu/

T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific
American, 284 (5), 2001, pp.28-37

L. Liu, C. Pu, and W. Han. XWRAP: An XML Enabled Wrapper Construction
System for Web Information Sources. In Int'l Conference on Data Engineering,
2000, pp. 611—621.

A.Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. Proceedings of the 22nd International
Conference on Very Large Databases VLDB-96, Bombay, India, September
1996.

A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in
Global Information Systems. International Journal on Intelligent Information
Systems, pp. 121-143, 1995.

E. Mena, V. Kashyap, A. Sheth, A. Illarramendi, “OBSERVER: An Approach
for Query Processing in Global Information Systems Based on Interoperation
Across Pre-existing Ontologies”, Proceedings of the 1% IFCIS Intl. Conference
on Cooperative Information Systems (CooplS’96), Brussels, Belgium, June 1996,
pp. 14-25.

E. Mena, A. lllarramendi, V. Kashyap, and A. P. Sheth. OBSERVER: An
approach for query processing in global information systems based on
interoperation across pre-existing ontologies. International Journal on Distributed
and Parallel Databases, Vol. 8, No. 2, pp. 223-271, April 2000.

I. Muslea. Extraction Patterns for Information Extraction Tasks: A Survey. The
AAAI-99 Workshop on Machine Learning for Information Extraction, 1999.
http://www.isi.edu/~muslea/PS/ml4ie-aaai99.ps

Oklahoma Geological Survey Observatory. Catalog of Nuclear Tests compiled
by James E. Lawson Jr.

http://www.okgeosurveyl.gov/level2/nuke.cat.index.html

N. Palsena. A collaborative Approach to learning Using Information Landscapes.
Masters Thesis. Computer Science Department, University of Georgia, 2000.

K. Parasuraman. A Multi-Agent System For Information Brokering In InfoQuilt.
Masters Thesis, Computer Science Department, University of Georgia, 1998.

S. Patel and A. Sheth. Planning And Optimizing Semantic Information Requests
On Heterogeneous Information Sources Using Semantically Modeled Domain
And Resource Characteristics. LSDIS Technical Report, University of Georgia,
March 2001. http://Isdis.cs.uga.edu/proj/iq/pubs/planning_optimization.doc

An abridged version of this report appears in Proceedings of the 6th Intl Conf
on Cooperative Information Systems (CooplS), Trento, Italy, September 5-
7,2001, pp. 135-149.

39

http://www-nlp.cs.umass.edu/

[Ril93]

[SA99]

[SAB+01]

[SBA+02]

[SemWeb]

[SFAL95]

[She96]

[Sin00]

[SK93]

[SK96]

[SKL99]

[SMO1]

[S0d99]

[SS98]

[SS99]

[SABO1]

[Tri]

Technical Report, LSDIS Lab, University of Georgia, March 2002.

E. Riloff. Automatically constructing a dictionary for information extraction
tasks. Proceedings of the 11™ National Conference on Artificial Intelligence
(AAAI-93) 811 —816. 1993.

A. Sahuguet and F. Azavant. W4F: a WysiWyg Web Wrapper Factory. 1999.
http://db.cis.upenn.edu/DL/WWW8/index.html

V.S.Subramanian, Sibel Adali, Anne Brink, Ross Emery, James J. Lu, Adil
Rajput, Timothy J. Rogers, Robert Ross and Charles Ward. HERMES:
Heterogeneous Reasoning and Mediator System. Submitted for publication.
http://www.cs.umd.edu//projects/hermes/overview/paper/index.html

Sheth, A., C. Bertram, D. Avant, B. Hammond, K. Kochut, Y. Warke. Semantic
Content Management for Enterprises and the Web, IEEE Internet computing,
July/August, 2002 (to appear). A version is available as a technical white paper
from Voquette, Inc. http://www.voquette.com/demo.

S. Decker (Ed.), The Semantic @ Web Community Portal.
http://www.semanticweb.org

S. Soderland, D. Fisher, J. Aseltine and W. Lehnert. Crystal: Inducing a
conceptual dictionary. Proceedings of the 14™ International Joint Conference on
Artificial Intelligence (IJCAI-95) 1314 — 1319. 1995.

A. Sheth. Data Semantics: What, Where and How? Proceedings of the 6th IFIP
Working Conference on Data Semantics (DS-6), R. Meersman and L. Mark
(Eds.), Chapman and Hall, London, UK, 1996.

D. Singh. An Agents Based Architecture for Query Planning and Cost modeling
of Web Sources. Masters Thesis. Computer Science Department, University of
Georgia, 2000.

A. Sheth and V. Kashyap. So Far (Schematically) yet So Near (Semantically).
Proc. of the DS-5 Semantics of Interoperable Database Systems, Lorne,
Australia; In IFIP Transactions A-25, North-Holland, 1993

A. Sheth and V. Kashyap. Media-independent correlation of information: What?
How? Proceedings of the First IEEE Conference Metadata Conference, April
1996.

A. Sheth, V. Kashyap, and T. Lima. Semantic Information Brokering: How Can a
Multi-Agent Approach Help? Cooperative Information Agents I1I, Lecture Notes
in Artificial Intelligence. M. Klusch, O. Shehory, G. Weiss (Eds.), Vol. 1652,
Berlin et al: Springer-Verlag 292-311, July 1999.

G. Stumme and A. Maedche, FCA-MERGE: Bottom-Up Merging of
Ontologies. Proceedings of the IJCAI-01 Workshop on Ontologies and
Information Sharing, Seattle, USA, August 4-5, 2001.

S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine Learning, 44(1-3):233--272, 1999.

K. Shah and A. Sheth. Logical Information Modeling of Web-accessible
Heterogeneous Digital Assets. Proceedings of the Forum on Research and
Technology Advances in Digital Libraries, (ADL'98) Santa Barbara, CA. 1998,
pp. 266-275,

K. Shah and A. Sheth, “InfoHarness: Managing Distributed, Heterogeneous
Information,” IEEE Internet Computing, 3 (6), November/December 1999.
Sheth, A., D. Avant, C. Bertram. "System and Method for Creating Semantic
Web and Its Applications in Browsing, Searching, Profiling, Personalization and
Advertisement" US Patent # 6,311,194), October 30, 2001.

Trinity Atomic Web Site. Gallery of US Nuclear Tests.
http://nuketesting.enviroweb.org/hew/Usa/Tests/

40

http://www.semanticweb.org/

Technical Report, LSDIS Lab, University of Georgia, March 2002.

[USGS] U.S. Geological Survey. http://www.usgs.gov

[Whi89] G. T. Whiteford. Earthquakes and Nuclear Testing: Dangerous Patterns and
Trends. In proceedings of the 2nd Annual Conference on the United Nations and
World Peace, Seattle, Washington, April 1989.

[Wie92] G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3), pp. 38-49.
[Wie97] G. Wiederhold. Value-added Mediation in Large-Scale Information Systems.

Database Application Semantics, Chapman and Hall, 1997.

APPENDIX A
IScape FORMAT

The code snippet shown below shows actual output of the IScape builder tool for the
example IScape as a result of the five step IScape creation process (with some
added comments). This IScape was created to test and help validate the hypothesis
that the Nuclear test can cause Earthquakes (i.e., data sources provide evidence to
support the NuclearTestCausesEarthquate relationship).

<?xml version="1.0" ?>
<!DOCTYPE Ontology (View Source for full doctype...)>
- <IScape>
<! -- textual description of the query -- >
<Statement>Find all nuclear tests conducted by India or Pakistan after January 1,
1995 with seismic body wave magnitude > 4.5 and find all earthquakes that
could have been caused due to these tests</Statement>
<Description>Find all nuclear tests conducted by India or Pakistan after January 1,
1995 with seismic body wave magnitude > 4.5 and find all earthquakes that
could have been caused due to these tests</Description>
- <Ontologies>
<! -- Ontologies are selected when designing an ISCape (IScape Builder Step 1) -->
<Ontology>Earthquake</Ontology>
<Ontology>NuclearTest</Ontology>
</Ontologies>

<! -- Relationships are selected during Step 1 of the IScape Building process. -->
<Relationship>NuclearTestCausesEarthquake</Relationship>

- <Constraint>
<! -- The constraints that qualify relationship are defined during Step 3 of the IScape
Building process. These constraints are applied to the data sources. -->

<And>

<0Or>

<BasicCondition>

<FunctionOperand>

<! -- Function is added by the user during Step 2 of the IScape Building process. This
function was created by Knowledge Builder, and its definition is stored in a
functionStore.java, When Knowledge Builder is closed, functions are compiled
and stored in appropriate .class files. -- >

<FunctionName>diffInDays</FunctionName>

41

Technical Report, LSDIS Lab, University of Georgia, March 2002.

- <ParameterList>
<ValueParam>1995, January, 1</ValueParam>
<AttributeParam Ontology="NuclearTest">eventDate</AttributeParam>
</ParameterList>
</FunctionOperand>
<Operator>GREATERTHANEQUALS</Operator>
<ValueOperand>0</ValueOperand>
</BasicCondition>
</Or>
- <0Or>
- <BasicCondition>
<AttributeOperand Ontology="NuclearTest">conductedBy</AttributeOperand>
<Operator>EQUALS</Operator>
<ValueOperand>Pakistan</ValueOperand>
</BasicCondition>
- <BasicCondition>
<AttributeOperand Ontology="NuclearTest">conductedBy</AttributeOperand>
<Operator>EQUALS</Operator>
<ValueOperand>India</ValueOperand>
</BasicCondition>
</Or>
- <Or>
- <BasicCondition>
<AttributeOperand
Ontology="NuclearTest">bodyWaveMagnitude</AttributeOperand>
<Operator>GREATERTHAN</Operator>
<ValueOperand>4.5</ValueOperand>
</BasicCondition>
</0Or>
</And>
</Constraint>
- <RuntimeConfigurableConstraints>

<AttributeOperand Ontology="Earthquake">eventDate </AttributeOperand>
</RuntimeConfigurableConstraints>
<! -- This IScape does not use the GroupBy clause and the Group Constraints that can
be added during Step 4 of the IScape Building process. -->

<! -- Projections specify the output parameters for the data set that supports the
IScape. These are specified in Step 5 of the IScape Building process -- >
- <Projections>
<AttributeOperand Ontology="Earthquake">magnitude </AttributeOperand>
<AttributeOperand Ontology="Earthquake">region</AttributeOperand>
<AttributeOperand Ontology="NuclearTest">testSite </AttributeOperand>
<AttributeOperand
Ontology="NuclearTest">bodyWaveMagnitude </AttributeOperand >
<AttributeOperand Ontology="NuclearTest">explosiveYield</AttributeOperand>
<AttributeOperand Ontology="NuclearTest">conductedBy</AttributeOperand>
- <FunctionOperand>
<FunctionName>distance</FunctionName>
- <ParameterList>
<AttributeParam Ontology="Earthquake">latitude </AttributeParam>

42

Technical Report, LSDIS Lab, University of Georgia, March 2002.

<AttributeParam Ontology="NuclearTest">latitude </AttributeParam>
<AttributeParam Ontology="Earthquake">longitude</AttributeParam>
<AttributeParam Ontology="NuclearTest">longitude </AttributeParam>
</ParameterList>
</FunctionOperand>
- <FunctionOperand>
<FunctionName>diffInDays</FunctionName>
- <ParameterList>
<AttributeParam Ontology="NuclearTest">eventDate </AttributeParam>
<AttributeParam Ontology="Earthquake">eventDate </AttributeParam>
</ParameterList>
</FunctionOperand>
<AttributeOperand Ontology="Earthquake">eventDate</AttributeOperand>
<AttributeOperand Ontology="Earthquake">description</AttributeOperand>
<AttributeOperand Ontology="Earthquake">image</AttributeOperand>
</Projections>
- <FunctionOperands>
- <FunctionOperand>
<FunctionName>diffInDays</FunctionName>
- <ParameterList>
<AttributeParam Ontology="NuclearTest">eventDate </AttributeParam>
<AttributeParam Ontology="Earthquake">eventDate </AttributeParam>
</ParameterList>
</FunctionOperand>
- <FunctionOperand>
<FunctionName>diffInDays</FunctionName>
- <ParameterList>
<ValueParam>1995, January, 1</ValueParam>
<AttributeParam Ontology="NuclearTest">eventDate </AttributeParam>
</ParameterList>
</FunctionOperand>
- <FunctionOperand>
<FunctionName>distance</FunctionName>
- <ParameterList>
<AttributeParam Ontology ="Earthquake">latitude </AttributeParam>
<AttributeParam Ontology="NuclearTest">latitude </AttributeParam>
<AttributeParam Ontology="Earthquake">longitude</AttributeParam>
<AttributeParam Ontology="NuclearTest">longitude</AttributeParam>
</ParameterList>
</FunctionOperand>
</FunctionOperands >
<AggregationOperands />
</IScape>

43

	Complex Relationship and Knowledge Discovery Support in the InfoQuilt System
	We see that in the period 1900-1949, the average rate of earthquakes was 68 per year and that for 1950-present� was 127 per year indicating that it has almost doubled [Whi89].
	For our example, none of the resources selected have binding patterns. Hence, this rule does not apply.
	The attributes that the IScape uses (including the attributes that we project on and those needed to evaluate relationships and constraints) are:

