North American Pikas: Population Status, Thermal Environments, & Periglacial Processes

Connie Millar¹, Bob Westfall¹, Andrew Smith²

¹USDA Forest Service, PSW Research Station, Albany, CA ²School of Life Sciences, Arizona State University, Tempe, AZ

American Pika (Ochotona princeps)

Collared Pika

Rabbit Relatives

- Alpine & Arctic
- Talus Dwelling
- Non-Hibernating
- Generalist Herbivore
- Metapopulation Spp
- -Thermally Sensitive

Climatic Relations: Impacts of Warming

Historic Extirpations

- Prehistoric pika sites
- Extant pika sites
- [®] Extirpated 20th century

Loarie et al. in review

Grayson 2005, Beever et al. 2003

Are Low and Warm Populations at Risk? Will Pika Migrate off Mountain Tops?

Petitioned for ESA protection, CA & Federal levels

Surveys in Sierra Nevada & W Great Basin Show Wide Elevation Range: 1827 - 4344m

Early 20th Century Range: 2500m was considered low

- 19% of current sites are lower

519 Sites 12 Mountain Ranges

Even locally, pika have very wide elevation ranges

...occupying available habitat from low to high

Mono Basin pika range: 2191m - 3981m = 1790m (5872ft) elevation span

Might Pika be Coping with Warming Climate?

1. Time-series analyses are essential to interpret trends in a metapop species

Bodie, CA: Low Elevation Site Smith, Nichols, Nagy, in prep

Total Patch Occupancy

20 Censuses: 1972-2009, 76 patches

Average = 39.6% occupancy

Range = 23.7 - 58.7%

Northern Patches

Average = 70.2% occupancy

Range = 48.6 - 88.2%

2009: 83.8% occupied

2. Pika Mitigate Their Thermal Environment

Local microclimatic processes and behaviors buffer pika against regional warming

- -Topographic Position
- Cold-Air Pooling (CAP)
- Within-Talus Processes
 - Adaptive Behavior

Thanks to Forsyth & Lundquist, based on Lundquist et al 2008

Taluses Provide Unique Thermal Refugia

Periglacial Origins: Common in Arid, Arctic Environments

85% of 519 Pika Sites Were Block Field Taluses

Different from Rockfall or Till

Self-organizing freeze-thaw & sorting processes, form in situ, Kessel & Werner

2003

- → optimal clast size
- → deep internal matrices for dispersal & predator

escape

→ fine sediments removed

Periglacial Processes Studied at High Latitudes Internal temps are in disequilibrium with external air temps

- Cooler than ambient air flows down & out base in summer
- Warmer than ambient air flows up & out top in winter

Balch & Chimney-Flue Circulation

Local perma-frost elevations depressed by as much as 1000m

RIFs Provide Optimal Pika Habitat: Forage Unlike many non-RIF streams, RIF outlet streams remain wet & seep water throughout the dry season

... supporting diverse forefield plant communities

Talus Thermal Regimes in the Sierra Nevada

Taluses Mitigate Warm Temperatures SUMMER

Low Meta 22.4 5.3 20.5 2.5 1. Talus Matrix is Cooler **15.2 Low Granitic** 18.2 3.4 1.2 than Talus Surface **High Meta** 4.2 **13.9** 2.2 **16.1 High Granitic** 14.9 4.0 **12.7**

Matrix SD

Surface SD

2. Daily Temp Fluctuations at Talus Matrix Are Less than Surface

3. Temperatures are Coolest *Low* in Taluses (surface & matrix) and on Adjacent Forefields

Pika Escape Heat Adaptively by Changing Time of Activity Pika retreat to matrix during mid-day on

warm summer days, especially at low elevation

Behaviour

Warm Days = Crepuscular Cool Days = Diurnal

Daily Activity
Bodie, CA (low elev)
Tioga Crest (high elev)
Smith 1974

Winter: Talus Surface Warmer than Matrix

Pika avoid severe cold in winter by staying at haypiles, which they locate near talus surfaces

Key Findings

Metapopulation Behavior: Time-series monitoring is essential to interpret decadal population trends

Elevation Range: Pika can (& do) persist over a broad elevation range in the SN & W Great Basin

Thermal Processes of Talus: Mitigate ambient air temperatures

Pika Behavior: Pika use talus adaptively to avoid extreme heat &

severe cold

Talus Characteristics Summer

- Matrix cooler than surface
- Lower daily temp fluctuations in matrix than at surface
- Strong positive lapse rates (coolest at talus base), esp on warm, dry days
- Forefields adjacent to talus also cool, but have high daily temperature fluctuation

Talus Characteristics Winter

Talus surface is warmer than matrix when snow-covered, (~0°C vs <0°C); Pika locate haypiles near talus surfaces

