North American Pikas: Population Status, Thermal Environments, & Periglacial Processes # Connie Millar¹, Bob Westfall¹, Andrew Smith² ¹USDA Forest Service, PSW Research Station, Albany, CA ²School of Life Sciences, Arizona State University, Tempe, AZ # American Pika (Ochotona princeps) #### Collared Pika #### Rabbit Relatives - Alpine & Arctic - Talus Dwelling - Non-Hibernating - Generalist Herbivore - Metapopulation Spp - -Thermally Sensitive ## Climatic Relations: Impacts of Warming #### Historic Extirpations - Prehistoric pika sites - Extant pika sites - [®] Extirpated 20th century Loarie et al. in review Grayson 2005, Beever et al. 2003 Are Low and Warm Populations at Risk? Will Pika Migrate off Mountain Tops? Petitioned for ESA protection, CA & Federal levels # Surveys in Sierra Nevada & W Great Basin Show Wide Elevation Range: 1827 - 4344m Early 20th Century Range: 2500m was considered low - 19% of current sites are lower 519 Sites 12 Mountain Ranges ## Even locally, pika have very wide elevation ranges ...occupying available habitat from low to high Mono Basin pika range: 2191m - 3981m = 1790m (5872ft) elevation span # Might Pika be Coping with Warming Climate? 1. Time-series analyses are essential to interpret trends in a metapop species Bodie, CA: Low Elevation Site Smith, Nichols, Nagy, in prep #### **Total Patch Occupancy** 20 Censuses: 1972-2009, 76 patches Average = 39.6% occupancy Range = 23.7 - 58.7% #### Northern Patches Average = 70.2% occupancy Range = 48.6 - 88.2% 2009: 83.8% occupied ## 2. Pika Mitigate Their Thermal Environment Local microclimatic processes and behaviors buffer pika against regional warming - -Topographic Position - Cold-Air Pooling (CAP) - Within-Talus Processes - Adaptive Behavior Thanks to Forsyth & Lundquist, based on Lundquist et al 2008 ## Taluses Provide Unique Thermal Refugia Periglacial Origins: Common in Arid, Arctic Environments 85% of 519 Pika Sites Were Block Field Taluses Different from Rockfall or Till Self-organizing freeze-thaw & sorting processes, form in situ, Kessel & Werner 2003 - → optimal clast size - → deep internal matrices for dispersal & predator escape → fine sediments removed Periglacial Processes Studied at High Latitudes Internal temps are in disequilibrium with external air temps - Cooler than ambient air flows down & out base in summer - Warmer than ambient air flows up & out top in winter Balch & Chimney-Flue Circulation Local perma-frost elevations depressed by as much as 1000m # RIFs Provide Optimal Pika Habitat: Forage Unlike many non-RIF streams, RIF outlet streams remain wet & seep water throughout the dry season ... supporting diverse forefield plant communities ## Talus Thermal Regimes in the Sierra Nevada # Taluses Mitigate Warm Temperatures SUMMER **Low Meta** 22.4 5.3 20.5 2.5 1. Talus Matrix is Cooler **15.2 Low Granitic** 18.2 3.4 1.2 than Talus Surface **High Meta** 4.2 **13.9** 2.2 **16.1 High Granitic** 14.9 4.0 **12.7** **Matrix SD** **Surface SD** 2. Daily Temp Fluctuations at Talus Matrix Are Less than Surface ## 3. Temperatures are Coolest *Low* in Taluses (surface & matrix) and on Adjacent Forefields Pika Escape Heat Adaptively by Changing Time of Activity Pika retreat to matrix during mid-day on warm summer days, especially at low elevation #### Behaviour Warm Days = Crepuscular Cool Days = Diurnal Daily Activity Bodie, CA (low elev) Tioga Crest (high elev) Smith 1974 ### Winter: Talus Surface Warmer than Matrix Pika avoid severe cold in winter by staying at haypiles, which they locate near talus surfaces ## **Key Findings** Metapopulation Behavior: Time-series monitoring is essential to interpret decadal population trends Elevation Range: Pika can (& do) persist over a broad elevation range in the SN & W Great Basin Thermal Processes of Talus: Mitigate ambient air temperatures Pika Behavior: Pika use talus adaptively to avoid extreme heat & severe cold #### Talus Characteristics Summer - Matrix cooler than surface - Lower daily temp fluctuations in matrix than at surface - Strong positive lapse rates (coolest at talus base), esp on warm, dry days - Forefields adjacent to talus also cool, but have high daily temperature fluctuation #### Talus Characteristics Winter Talus surface is warmer than matrix when snow-covered, (~0°C vs <0°C); Pika locate haypiles near talus surfaces