North American Pikas: Population Status, Thermal Environments, & Periglacial Processes

Connie Millar¹, Bob Westfall¹, Andrew Smith²

¹USDA Forest Service, PSW Research Station, Albany, CA
²School of Life Sciences, Arizona State University, Tempe, AZ

Photo: A. Shcherbina
American Pika
(Ochotona princeps)

Collared Pika
(O. collaris)

Rabbit Relatives
- Alpine & Arctic
- Talus Dwelling
- Non-Hibernating
- Generalist Herbivore
- Metapopulation Spp
- Thermally Sensitive
Climatic Relations: Impacts of Warming

Historic Extirpations

• Prehistoric pika sites
○ Extant pika sites
⊕ Extirpated 20th century

Modeled Future Extirpation

Are Low and Warm Populations at Risk?
Will Pika Migrate off Mountain Tops?

Petitioned for ESA protection, CA & Federal levels

Grayson 2005, Beever et al. 2003

Loarie et al. in review
Surveys in Sierra Nevada & W Great Basin Show Wide Elevation Range: 1827 - 4344m

Early 20th Century Range: 2500m was considered low – 19% of current sites are lower

519 Sites
12 Mountain Ranges

Millar & Westfall in press, AAAR
Even locally, pika have very wide elevation ranges

Low-High Elevation Pairs for 6 Canyons, Sierra Nevada

* = pika sites

...occupying available habitat from low to high

Mono Basin pika range: 2191m - 3981m
=1790m (5872ft) elevation span
Might Pika be Coping with Warming Climate?

1. Time-series analyses are essential to interpret trends in a metapop species.

Total Patch Occupancy

20 Censuses: 1972-2009, 76 patches

- **Average** = 39.6% occupancy
- **Range** = 23.7 - 58.7%

Northern Patches

- **Average** = 70.2% occupancy
- **Range** = 48.6 - 88.2%

2009: 83.8% occupied

Bodie, CA: Low Elevation Site

Smith, Nichols, Nagy, in prep
2. Pika Mitigate Their Thermal Environment

Local microclimatic processes and behaviors buffer pika against regional warming

- Topographic Position
- Cold-Air Pooling (CAP)
- Within-Talus Processes
- Adaptive Behavior

Narrow steep canyons, cirques, Northern aspects

Thanks to Forsyth & Lundquist, based on Lundquist et al 2008
Taluses Provide Unique Thermal Refugia

Periglacial Origins: Common in Arid, Arctic Environments

85% of 519 Pika Sites Were Block Field Taluses

Different from Rockfall or Till

Self-organizing freeze-thaw & sorting processes, form in situ, Kessel & Werner 2003

→ optimal clast size
→ deep internal matrices for dispersal & predator escape
→ fine sediments removed

Millar & Westfall 2008 & in press
Periglacial Processes Studied at High Latitudes

Internal temps are in disequilibrium with external air temps
- Cooler than ambient air flows down & out base in summer
- Warmer than ambient air flows up & out top in winter

Balch & Chimney-Flue Circulation

Delaloye & Lambiel 2005

Juliussen & Humlum 2008

Local perma-frost elevations depressed by as much as 1000m
RIFs Provide Optimal Pika Habitat: **Forage**

Unlike many non-RIF streams, RIF outlet streams remain wet & seep water throughout the dry season

...supporting diverse forefield plant communities
Talus Thermal Regimes in the Sierra Nevada

Sierra Nevada, CA

Temp Study (iButtons)
4 Taluses
2 Elevs: High ~3260m, Low ~2360m
2 Substrates: Granitic, Metamorphic

Millar & Westfall, ongoing study
Taluses Mitigate Warm Temperatures

SUMMER

1. Talus Matrix is Cooler than Talus Surface

<table>
<thead>
<tr>
<th></th>
<th>Surface</th>
<th>SD</th>
<th>Matrix</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Meta</td>
<td>22.4</td>
<td>5.3</td>
<td>20.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Low Granitic</td>
<td>18.2</td>
<td>3.4</td>
<td>15.2</td>
<td>1.2</td>
</tr>
<tr>
<td>High Meta</td>
<td>16.1</td>
<td>4.2</td>
<td>13.9</td>
<td>2.2</td>
</tr>
<tr>
<td>High Granitic</td>
<td>14.9</td>
<td>4.0</td>
<td>12.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

° C

2. Daily Temp Fluctuations at Talus Matrix Are Less than Surface
3. Temperatures are Coolest Low in Taluses (surface & matrix) and on Adjacent Forefields
Positive Lapse Rates especially relative to talus base

Talus Surface
Rate High:Low

Compare cool & overcast periods

Talus Matrix
Rate Mid:Low

Pika spend much of their time near talus base & in forefield

haypile
Pika Escape Heat Adaptively by Changing Time of Activity

Pika retreat to matrix during mid-day on warm summer days, especially at low elevation.

Behaviour

Warm Days = Crepuscular
Cool Days = Diurnal

Daily Activity

Bodie, CA (low elev)
Tioga Crest (high elev)
Smith 1974
Winter: Talus Surface Warmer than Matrix

Pika avoid severe cold in winter by staying at hay-piles, which they locate near talus surfaces.
Key Findings

Metapopulation Behavior: Time-series monitoring is essential to interpret decadal population trends.

Elevation Range: Pika can (& do) persist over a broad elevation range in the SN & W Great Basin.

Thermal Processes of Talus: Mitigate ambient air temperatures.

Pika Behavior: Pika use talus adaptively to avoid extreme heat & severe cold.
Talus Characteristics Summer

– Matrix cooler than surface
– Lower daily temp fluctuations in matrix than at surface
– Strong positive lapse rates (coolest at talus base), esp on warm, dry days
– Forefields adjacent to talus also cool, but have high daily temperature fluctuation
Talus Characteristics Winter

Talus surface is warmer than matrix when snow-covered, (~0°C vs <0°C); Pika locate haypiles near talus surfaces

Semi-arid locations, such as SN & GB, where snowpack is light or blows off, or regions where snowpacks are diminishing, may be vulnerable for pika