California Transportation Fuel Overview & Crude Oil Trends

OSPR - Spill Prevention and Response Day

California Maritime Academy, Vallejo, CA

May 14, 2014

Gordon Schremp
Fuels and Transportation Division
California Energy Commission
gordon.schremp@energy.ca.gov
Fuel Infrastructure – Key Elements

• The California transportation fuel “infrastructure” consists of several interconnected assets operated by a combination of refiner and third-party companies
 • Refineries
 • Pipelines
 • Marine terminals
 • Storage tanks
 • Rail
• Crude oil and petroleum product infrastructure assets are separate and distinct from one another – not interchangeable
• Unlike with the electricity distribution system, Northern California is not directly connected to Southern California
Western States – Fuel Flows

1 Foreign Imports into Northern California
2 Foreign Imports into Southern California
3 US Gulf Coast Imports into Northern California
4 US Gulf Coast Imports into Southern California
5 Ship/barge - San Francisco to Los Angeles
6 Ship/barge - San Francisco to Portland
7 Ship/barge - Washington to San Francisco and Los Angeles
8 Kinder Morgan - San Francisco to Chico
9 Truck - Chico into Southern Oregon
10 Kinder Morgan - San Francisco to Reno
11 Kinder Morgan - San Francisco to Fresno
12 Kinder Morgan - Bakersfield to Fresno
13 Truck - Imperial Terminal to Western Arizona
14 Kinder Morgan - Los Angeles to Las Vegas
15 Kinder Morgan - Los Angeles to San Diego
16 Kinder Morgan - Los Angeles to Imperial
17 Kinder Morgan - Los Angeles to Phoenix
18 Kinder Morgan - El Paso to Phoenix
19 Kinder Morgan - El Paso to Tucson
20 Longhorn Pipeline (Magellan Midstream Partners, L.P.)
21 Ship/barge - San Francisco to Eureka
22 UNEV - Salt Lake City to Las Vegas
23 Foreign Exports from Southern California
24 Foreign Exports from Northern California

Source: Stillwater Associates.
Transportation Fuel Infrastructure

Source: Energy Information Administration
Key Elements - Refineries

- 3 primary refinery locations
- 13 refineries produce transportation fuels that meet California standards
- 8 smaller refineries produce asphalt and other petroleum products
- California refineries provide majority of transportation fuel to neighboring states
- Process over 1.6 million barrels per day of crude oil
Key Elements - Refineries

- Refineries are a primary hub of logistical activity
 - Raw materials imported & finished products shipped
- Crude oil during 2012 received by
 - Marine vessels (foreign) - 818.1 TBD
 - Marine vessels (Alaska) – 206.9 TBD
 - California source via pipelines – 599.5 TBD
 - Rail/truck – 2.9 TBD
- Process units operate continuously at or near maximum capacity, except during periods of planned maintenance or unplanned outages
2011 California Refinery Output by Product Type

- CARB Compliant Gasoline*, 41.98%
- Conventional gasoline, 5.47%
- Other RBOB*, 0.94%
- CARB Diesel, 13.22%
- Commercial Jet Fuel, 12.17%
- Military Jet Fuel, 1.38%
- Other Products, 2.81%
- Asphalt and Road Oil, 1.21%
- Residual Fuel Oil, 2.31%
- Liquified Refinery Gases, 2.84%
- Still Gas, 4.83%
- Petroleum Coke, 6.68%

*Note: Does not include ethanol.

Source: California Energy Commission.
Key Elements – Refineries (cont)

• Output from the refineries is usually placed in intermediate tanks prior to blending the finished products
• The majority of gasoline, diesel and jet fuel is shipped from the refinery by pipeline to over 60 distribution terminals
• Tanker trucks then transport fuel to retail & non-retail stations
• Several truck trips during 2013
 • Gasoline – 39.84 MM gal/day
 • 4,980 tanker deliveries/day
 • Diesel fuel – 9.53 MM gal/day
 • 1,191 tanker deliveries/day
Key Elements – Pipelines

- Pipelines are used throughout the distribution infrastructure to interconnect key elements.
- Intra-state pipelines are used to convey petroleum products within California’s borders.
- Interstate pipelines are used to export transportation fuels to Arizona and Nevada:
 - NV – Over 90% of supply
 - AZ – Over 50% of supply
- Pipelines usually include pump stations, break-out tanks, storage tanks and distribution terminals.
- As is the case with refineries, pipeline systems normally operate on a continuous basis.
- Pipelines can only operate if transportation fuels are available to push liquid through the system.
Key Elements - Pipelines (cont)

- The pipeline infrastructure in California is controlled by a combination of common carrier and private companies.
 - Kinder Morgan is the sole common carrier of petroleum product pipelines in the State and transports the majority of transportation fuels through its system every day.
 - Other private companies, such as Chevron, ExxonMobil, Shell, and Tesoro operate some proprietary systems or segments that handle the balance of transportation fuels.
Bay Area Major Petroleum Pipeline Routes

5/14/2014

California Energy Commission
Key Elements - Pipelines (cont)

- Kinder Morgan’s Northern California system is not connected to its Southern California system.
- Fuel re-supply by pipeline from Southern California not possible
- Tanker trucks quickest, viable option to bring in additional fuel
Nature of Petroleum Pipeline Infrastructure

• Pipelines operate continuously
• Majority of petroleum products are transported through the pipeline infrastructure
• When the operations of the pipeline infrastructure are temporarily halted, two consequences arise:
 • Inventory levels at refineries increase because pipeline shipments are interdicted
 • Inventory levels decline at storage terminals connected to the pipeline infrastructure
• The longer the pipeline service is halted, the higher the probability that refinery operations (production) will have to be curtailed and the greater the likelihood that distribution terminals will start to run out of their supply of transportation fuels
Key Elements – Marine Facilities

- Marine facilities are located in sheltered harbors with adequate draft to accommodate typical sizes of petroleum product tankers and crude oil vessels.
- Wharves usually have adjacent storage tanks that are used to temporarily hold petroleum products prior to transfer to a subsequent location.
- Most refiners operate a proprietary dock.
- Third party storage provides access to majors and independents:
 - Kinder Morgan
 - Pacific Atlantic
 - NuStar
 - Petro-Diamond
Key Elements – Storage Tanks

- Storage tanks are vital to the continuous flow of petroleum products into and through California.
- Tanks are located at docks, refineries, terminals and tank farms.
- Tanks serve different storage purposes:
 - Unload marine vessels
 - Receive pipeline shipments
 - Feed truck loading facilities
 - Hold inventories in advance of planned maintenance
 - Strategic storage that can be used for emergencies or periods of rapid price increases
Rail Logistics - Ethanol

- State receives ethanol via rail unit trains at two locations
 - Lomita Rail Terminal in Carson
 - West Colton Rail Terminal
- Ethanol is then trucked to gasoline distribution terminals
 - 4.0 MM gal/day during 2013 or 500 tanker truck deliveries/day
Rail Logistics - Ethanol

- Northern California has no facilities to receive unit trains of ethanol following the conversion of the KinderMorgan Richmond rail yard from ethanol to crude service during October of 2013

- Current federal and state regulations require 10% ethanol in gasoline
Rail Logistics – Other Uses

- Refiners use rail cars to routinely ship propane and seasonally send out and receive butane.
- Rail cars are also used to deliver refinery feedstock such as gas oils and sulphuric acid for alkylation units.
- More recently, California refiners have started using rail cars to import crude oil from Canada and domestic sources outside the state due to changing trends of increasing oil production and discounted prices.
Rail Logistics – Crude Oil

- Crude-by-rail imports growing in California
 - 1.0 percent during 2013
 - 2.0 percent by Dec. ‘13
- Five CBR projects seeking permits
 - 3 Northern California
 - 2 Bakersfield area
 - 1 San Luis Obispo County
- Could grow up to 23 percent by 2016

Sources: PIIA data, Energy Commission analysis
Hydraulic Fracturing Overview

- Hydraulic fracturing or fracking is not a new procedure and is estimated to have been used in over one million wells worldwide.

- According to the California Independent Producers Association...
 - *Hydraulic fracturing is a type of “completion” technique where high pressure water, sand, and chemicals are injected usually thousands of feet below the surface into low permeability rock to create microscopic fractures that allow oil and natural gas trapped in small pores to migrate to the wellbore and be produced.*
 - *The injected fluid for each hydraulic fracturing job is typically 95% water, 4.5% sand, and 0.5% chemicals.*

- Fracking had initially been utilized as early as 1947 in Kansas.
- California fracking activity dates back to the 1950s.
Hydraulic fracturing often involves the injection of more than a million gallons of water, chemicals, and sand at high pressure down the well. The depth and length of the well varies depending on the characteristics of the hydrocarbon-bearing formation. The pressurized fluid mixture causes the formation to crack, allowing natural gas or oil to flow up the well.

Water Use in Hydraulic Fracturing Operations

- **Water Acquisition**: Large volumes of water are transported for the fracturing process.
- **Chemical Mixing**: Equipment mixes water, chemicals, and sand at the well site.
- **Well Injection**: The hydraulic fracturing fluid is pumped into the well at high injection rates.
- **Flowback and Produced Water**: Recovered water (called flowback and produced water) is stored on-site in open pits or storage tanks.
- **Wastewater Treatment and Waste Disposal**: The wastewater is then transported for treatment and/or disposal.

Hydraulic Fracturing – New Paradigm

• Hydraulic fracturing in California could halt production decline and result in a resurgence of output – but too early to tell
• However, hydraulic fracturing activity in North Dakota and Texas has dramatically increased domestic crude oil production
• Increased output has outpaced the ability of industry to transport this extra crude oil to refiners via a network of pipelines
• Expansion of existing crude oil pipeline systems and construction of new pipeline segments have increased the ability to ship crude oil from these regions…but not fast enough
• Temporary gluts of crude oil compelled producers to discount their price for the oil sufficient to enable the economic transportation by rail cars
U.S. Tight Crude Oil Production Surging

Source: EIA Drilling Productivity Report

Barrels Per Day

Jan-07 Apr-07 Jul-07 Oct-07 Jan-08 Apr-08 Jul-08 Oct-08 Jan-09 Apr-09 Jul-09 Oct-09 Jan-10 Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11 Jan-12 Apr-12 Jul-12 Oct-12 Jan-13 Apr-13 Jul-13 Oct-13 Jan-14

California Energy Commission

5/14/2014
U.S. Crude Oil Production Rebounding

Chart peak of 9.173 million barrels per day - Feb. 1986
All-time peak of 10.044 million barrels per day - Nov. 1970

8.033 million barrels per day
Highest since Aug. of 1988

2.924 million barrels per day
Highest since 1977 annual average

0.951 million barrels per day

Source: Energy Information Administration (EIA)
U.S. crude oil production has increased from 5.402 million barrels per day in January 2010 to 8.033 million barrels per day during February 2014.
Crude Oil Discounts Enable Rail Movements

Source: Barclays CEO Energy-Power Conference, Tesoro, September 2013
Each rail car assumed to carry approximately 714 barrels of crude oil.

Sources: American Association of Railroads & Energy Information Administration
Crude Oil Sources – Bay Area Refineries

• Northern California refineries processed 642.2 thousand barrels per day of crude oil during 2012
 • 316.0 TBD foreign marine imports
 • 247.8 TBD pipeline shipments
 • 77.8 TBD ANS marine imports
 • 0.6 TBD rail imports
• Bay Area refineries processed 39.5 percent of total crude oil
• Increased crude-by-rail likely to back out marine receipts of similar quality
• Rail capability increases flexibility to enhance supply options & reduces risk of crude oil receipt curtailment

Source: Plains All American

5/14/2014
California Energy Commission
California Crude-by-Rail Imports Grow

- 2012 CBR imports – 1.09 MM Bbls
- 2013 CBR imports – 6.30 MM Bbls
 - Approximately 9,600 rail tank cars

2013 Crude-By-Rail Imports

<table>
<thead>
<tr>
<th>Country or State of Origin</th>
<th>2013 Total Barrels</th>
<th>2013 Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Totals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>3,472,050</td>
<td>55.15%</td>
</tr>
<tr>
<td>Colorado</td>
<td>500,706</td>
<td>7.95%</td>
</tr>
<tr>
<td>New Mexico</td>
<td>411,725</td>
<td>6.54%</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,348,681</td>
<td>21.42%</td>
</tr>
<tr>
<td>Utah</td>
<td>59,004</td>
<td>0.94%</td>
</tr>
<tr>
<td>Wyoming</td>
<td>441,398</td>
<td>7.01%</td>
</tr>
<tr>
<td>Other States</td>
<td>62,621</td>
<td>0.99%</td>
</tr>
<tr>
<td>Subtotals</td>
<td>6,296,185</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Northern California		
Canada	3,472,050	68.93%
Colorado	342,870	6.81%
New Mexico	411,725	8.17%
North Dakota	272,820	5.42%
Utah	59,004	1.17%
Wyoming	441,398	8.76%
Other States	37,255	0.74%
Subtotals	1,259,063	100.00%

Bakersfield & Southern California		
Canada	3,472,050	68.93%
Colorado	342,870	6.81%
New Mexico	411,725	8.17%
North Dakota	272,820	5.42%
Utah	59,004	1.17%
Wyoming	441,398	8.76%
Other States	37,255	0.74%
Subtotals	5,037,122	100.00%

Other States include Illinois, Nebraska, Oklahoma, Texas and Washington.

Sources: PIIRI data, Energy Commission analysis
WesPac Energy Project – Pittsburg - Planned
- Rail receipt average capability of 50,000 barrels per day (BPD)
- Also plan marine terminal for receipt and loading – average of 192,000 BPD
- Combined average receipt capability of 242,000 BPD
- Connection to KLM pipeline – access to Valero, Shell, Tesoro & Phillips 66 refineries
- Connection to idle San Pablo Bay Pipeline – access to Shell, Tesoro & Phillips 66 refineries
- Construction could be completed within 18 months of receiving all permits

Valero – Benicia Crude Oil By Rail Project - Planned
- Benicia refinery
- Up to 100 rail cars per day
- Up to 70,000 BPD
- Draft EIR scheduled to be released June 10, 2014
- Operational 2015, first quarter
Crude-by-Rail Projects – Rest of California

Alon Crude Flexibility Project - Planned
- Alon – Bakersfield Refinery
- 2 unit trains per day
- 104 rail cars per unit train
- 150,000 BPD offloading capacity
- Will be able to receive heavy crude oil
- Oil tankage connected to main crude oil trunk lines – transfer to other refineries
- Seeking public comment by May or June 2014
- Construction could begin late 2014 or early 2015 – take 9 months to complete

Phillips 66 – Santa Maria Refinery – Planned
- Up to 41,000 BPD
- Planning Commission meeting on revised EIR scheduled for late 2014
- Construction expected to take 9 to 12 months to complete

Plains All American – Bakersfield Crude Terminal – Planned
- Purchased UDS assets, including “planned” project
- Up to 65,000 BPD
- Non-exclusive Franchise Pipeline Agreement application final permit
- Connection to existing crude oil lines via new six-mile pipeline
- Operational late 2014 or early 2015

Valero – Wilmington Refinery – Canceled
- Up to 60,000 BPD
- Withdrew permit application
Crude-by-Rail Projects – Outside California

Tesoro – Anacortes Refinery – Operational
- Up to 50,000 BPD
- 40 percent of refinery crude oil supply
- Operational September 2012

Phillips 66 – Ferndale Refinery – Operational
- Up to 20,000 BPD, mixed freight cars
- Permits received for expansion to 40,000 BPD in 2014 – ready by late 2014

BP – Cherry Point Refinery – Operational
- Up to 60,000 BPD
- Operational by December 26, 2013

Tesoro – Savages, Port of Vancouver Project – Planned
- Rail receipts of unit trains & loading of marine vessels
- Initial capacity up to 120,000 BPD
- Tesoro will have off-take rights to 60,000 BPD
- Expansion capability of up to 280,000 BPD
- Port authority approved proposal on 7/24/13
- Initial start-up during 2015
Crude-by-Rail Characteristics

Source: MathPro, Inc.
Questions?

Source: US Navy photo courtesy Shipscribe.com

TS California State, April 7, 1932, Washington Navy Yard, Washington D.C.