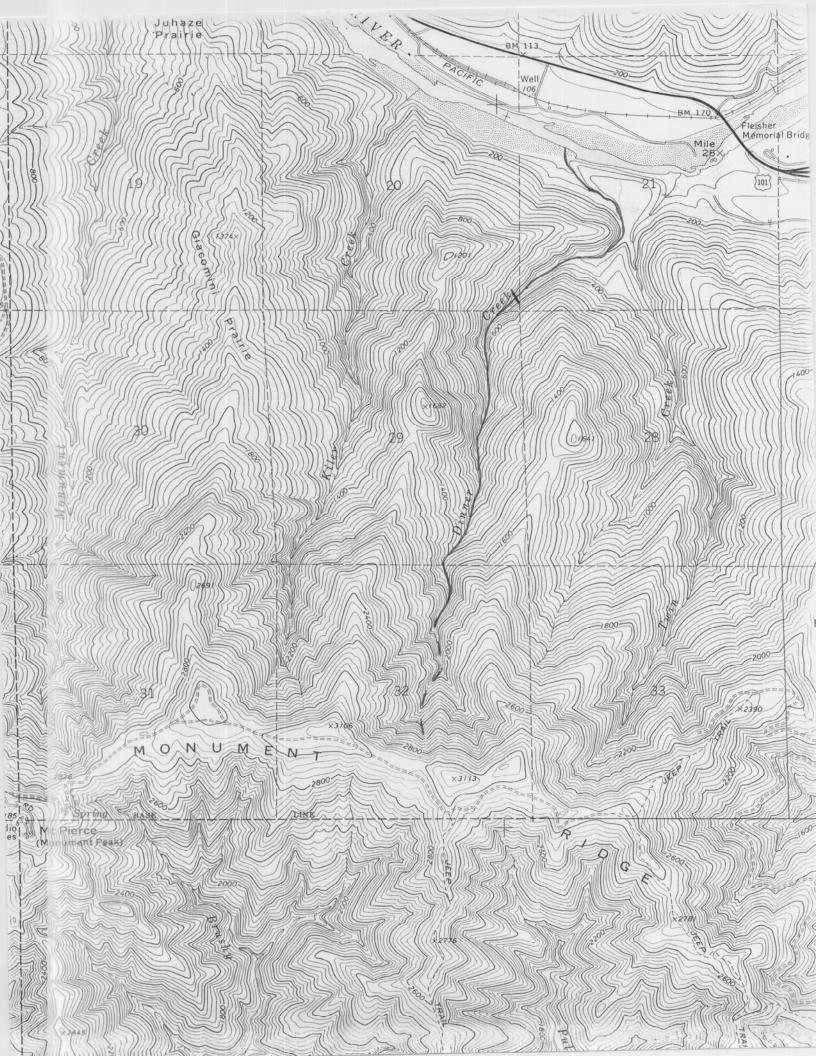
STREAM INVENTORY REPORT

INTRODUCTION

A physical fish habitat inventory was completed on Dinner Creek, starting at the confluence with the Eel River, on October 5, 9 & 10, 1990 by Steve Holzerland, and Michele Long, California Conservation Corps (CCC), Technical Advisors. The purpose of this survey was to collect baseline data of the habitat available to anadromous salmonids and determine if stream restoration / enhancement work is warranted. Electrofishing was completed on October 5, 1990 to determine species composition and distribution.

WATERSHED OVERVIEW


Dinner Creek is a tributary to the Eel River, in Humboldt County, California (Figure 1). The legal description at the confluence of the Eel River is T1N R1E S21. The total length of the stream surveyed was 4883 feet, with 1007 feet of side channel. The total length of blue line stream according the USGS quadrangle is 2.30 miles. The total watershed area is 1.34 square miles. Additional anadromous fish habitat exists above where this survey ends. Dinner Creek is a first order stream.

The watershed is a second growth redwood forest, under the ownership of the Pacific Lumber Company and is managed for timber production. Vehicle access is by taking the Stafford Road exit from Highway 101 and going west to the locked PALCO gate. The road crosses Dinner Creek approximately 1150 feet from the confluence of the Eel River.

METHODS

The survey methodology follows the <u>California Salmonid Stream</u>
<u>Habitat Restoration Manual</u> (Flosi and Reynolds). Dinner Creek was habitat typed using the 24 habitat types classification (Mc Cain et al). In preparation). Channel typing was conducted according to the classification system of Rosgen (1985).

The minimum length of measured habitat unit was as long as the mean channel wetted width. Channel measurements were accomplished with range finders and tape measures. Habitat type measurements included mean length, mean width, mean depth, and maximum depth (to the nearest 0.1 foot). Depth of the pool tail crest at each pool habitat unit was measured at the thalweg.

A shelter rating was calculated for each habitat unit by multiplying shelter value and percent cover. A shelter value of 0 (no shelter), 1 (low), 2 (medium), or 3 (high) was given according to the shelter complexity. An estimate on percent cover within each habitat unit was recorded. At each habitat unit 100% of the cover was classified into nine cover types.

The dominant and sub-dominant substrate was estimated using seven size classes of substrate composition and recorded for all habitat units. Embeddedness was optically estimated at the tail out of pool habitat units as 0 - 25% (value 1), 26 - 50% (value 2), 51 - 75% (value 3), 76 - 100% (value 4).

An estimate of the percent canopy was recorded for each habitat unit. The percent right and left bank covered with vegetation, and the dominant vegetation sub-type was estimated.

Time and temperature were recorded at every tenth habitat unit.

RESULTS

* ALL TABLES AND GRAPHS ARE LOCATED IN THE BACK OF THIS REPORT *

Table 1 summarizes the riffle, flatwater, and pool habitat types. By percent occurrence, riffles make up 36.92%, pools make up 23.46%, and flatwater habitat types make up 33.85% (Graph 1). Riffle habitat types make up 35.81% of the percent total length, pools 11.44%, flatwater habitat types make up 37.01% (Graph 2).

Seventeen of the 24 habitat types were identified. Fifteen units were dry. The physical habitat data is summarized in Table 2. The most frequent habitat types by percent occurrence were low gradient riffles 31.54%, step runs 16.92%, and runs 13.08% (Graph 3).

Table 3 summarizes the pool habitat types. Main channel pools occurred most often at 39.34% and comprised 38.93% of the total length (Graph 4). Scour pools had the highest mean shelter rating at 81.82, backwater pools at 68.67, and main channel pools at 46.88.

Table 4 is a summary of maximum pool depths by pool habitat types. The maximum depth for 58 of the 61 pools was less than 2 feet.

Table 5 is a summary of the dominant substrate by habitat type. Small cobble was the dominant substrate in 46.5% of the units.

Table 6 summarizes mean percent cover by habitat type. The majority of the cover consisted of boulders. Small and large woody debris was lacking as cover in most of the pools.

Dinner Creek is a B6 channel type throughout the survey reach.

Table 2 summarizes mean percent right and left bank cover and mean percent canopy per habitat type. For the entire stream reach surveyed, the mean percent right bank cover was 53.4%. The mean percent left bank cover was 54%. The stream bank composition consisted of 9.6% rock/bedrock, 28.5% coniferous trees (primarily downed trees or logs), 10.6% grasses, 34.7% deciduous trees, 8.0% brush, and 8.6% bare soil. The mean percent canopy was 66.1%.

For the 61 pools the pool tail embeddedness was estimated. 42 of the pool tail outs, or 68.8%, had a value of 4. 26.2% had a value of 3.

Air temperature ranged from 49 to 62 degrees fahrenheit. Water temperature ranged from 44 to 54 degrees fahrenheit.

The following landmarks and possible problem sites were noted. All the distances are approximate and taken from the confluence of Dinner Creek with the Eel River.

*	518′	Erosion right bank.
*	1151'	Bridge crossing.
*	3767′	Tributary enters from the right bank.
*	3900′	Erosion left bank.
*	4883′	End of survey. Not the end of the anadromous salmonid habitat.

ELECTROFISHING RESULTS

Electrofishing was completed on October 5, 1990 by Michele Long and Steve Holzerland (CCC). Two habitat units were sampled. The results are as follows:

The first unit was a plunge pool approximately 325 feet from the confluence of the Eel River. The fish found consisted of 8 steelhead ranging from 50 to 140 mm and one sculpin.

The second unit was a plunge pool approximately 1180 feet from the confluence of the Eel River. A total of 23 steelhead from 40 to 120 mm were found.

RECOMMENDATIONS

- 1) Dinner Creek should be managed as an anadromous, natural production stream.
- 2) Stabilize the bank erosion at 3900' feet from the confluence of the Eel River and the smaller bank erosion sites identified in the survey.

- 3) Create additional summer rearing habitat for steelhead by developing pool habitat. Pools make up 36.92% of the habitat by percent occurrence and 11.44% of the total length of the stream surveyed. This can be accomplished by converting riffle and flatwater habitat into pool habitat.
- 4) Increase woody cover in the pools. Cover in the pools is composed of primarily boulders. There is a lack of woody debris to provide cover throughout the stream surveyed.

Table 1 - SUMMARY OF RIFFLE, FLATWATER, AND POOL HABITAT TYPES

Survey Dates: 10/05/90, 10/10/90

Drainage: EEL RIVER

LEGAL DESCRIPTION: TOINROIES21 LATITUDE: 40°27'21" LONGITUDE: 124°4'41" Confluence: QUAD: SCOTIA

MEAN	SHELTER	RATING		34	39	65	0			
MEAN	RESIDUAL	POOL VOL	(cu.ft.)	0	0	47	0			
TOTAL	VOLUME	(cu.ft)		2508	5587	3769	0	TOTAL VOL.	(cu. ft.) 11864	
MEAN	AREA VOLUME	(cu.ft.)		26	63	62	0	F		
TOTAL	AREA	(sq.ft.) (cu.ft.)		11787	14288	4553	0	TOTAL AREA	(sq. ft.) 30628	
MEAN	AREA	(sq.ft.)		123	162	75	0			
MEAN	DEPTH	(ft.)		0.2	0.4	0.7	0.0			
MEAN	WIDTH	(ft.)		5.9	6.2	7.5	0.0			
TOTAL PERCENT	TOTAL	(ft.) LENGTH (ft.) (ft.)		36	37	10	16	bit		
TOTAL	LENGTH	(ft.)		2133	2206	614	937	TOTAL LENGTH	(ft.) 5890	
MEAN	LENGTH	(ft.)		22	25	10	62			
HABITAT	PERCENT LENGTH	OCCURRENCE		37	34	23	9			
TATIAN HABITAT	MEASURED TYPE			STEGLO	FT.ATWATER	POOL	DRY			
TINU	MEASTIRE			90	o a	2 5	15	ECE	UNITS	200

Drainage: EEL RIVER

Table 2 - SUMMARY OF HABITAT TYPES AND MEASURED PARAMETERS

Survey Dates: 10/05/90, 10/10/90

LEGAL DESCRIPTION: TOINROIES21 LATITUDE: 40°27'21" LONGITUDE: 124°4'41" Confluence: QUAD: SCOTIA

MEAN	CANOPY		0/0	89	57	10	64	63	9	29	65	238	06	71	77	68	71	70	89	82	69			
	BANK CA	ATED	9/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	LT.	VEGET																						
MEAN	RT. BANK	RATING VEGETATED VEGETATED	9/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
MEAN	SHELTER RT.	RATING V		31	57	0	15	38	46	47	225	120	128	99	99	м	78	150	95	20	0			
MEAN	RESIDUAL	POOL VOL	cu.ft.	0	0	0	0	0	0	37	23	72	92	32	121	10	15	36	54	11	0			
TOTAL	VOLUME R	д	cu.ft.	2175	329	4	570	1300	3717	1266	46	360	209	334	987	35	196	36	277	24	0	TOTAL VOL.	(cu.ft)	11864
MEAN	VOLUME		cu.ft.	27	25	4	57	38	84	53	46	06	105	42	141	12	33	36	69	24	0	TOT		
TOTAL	AREA V		sq.ft. o	10577	1193	18	1205	3320	9764	1777	16	421	210	439	771	140	305	52	327	32	0	AREA	(sq.ft)	30628
MEAN	AREA		sq.ft.	129	92	18	120	86	222	74	16	105	105	55	110	47	51	52	82	32	0			
MEAN MAXIMUM	DEPTH		ft.	0.8	9.0	0.4	0.8	6.0	1.0	2.0	6.0	2.0	1.7	1.6	3.5	0.5	1.0	0.8	1.5	1.1	0.0			
MEAN M	DEPTH		ft.	0.2	0.3	0.2	0.4	0.4	0.4	0.7	9.0	0.8	1.0	0.7	1.1	0.3	9.0	0.7	6.0	0.8	0.0			
MEAN	WIDTH		ft.	9	9	r	9	9	7	7	7	7	O	7	10	S	00	7	11	4	0			
TOTAL	LENGTH		%	33	, m	0	м	0	25	S	0	Ч	0	1	1	0	П	0	1	0	16			
TOTAL	LENGTH		ft.	1945	184	4	188	558	1460	268	11	57	25	63	73	50	5 6	00	33	00	937	LENGTH	(ft.)	5890
MEAN	ENGTH		£t.	70	14	4	19	16	33	11	11	14	13	α	10	10	7	. 00	00	00	62			
HABITAT	TYPE OCCURRENCE LENGTH		%	C	4 14	0	0 4	13	17	0	0	, 73		1 6) -	1 0	0	7	0	9			
TABITAL	TVDE	7777		5	LIGE	NOW O	G.T.	RIN	NAS	MCD	CRD	TST.	1.0	10001	0.10	מטט	BDB	RPR	BPL	DPI	DRY			
TATIAN HABITAT	Cadrocam	MEASONED	#		7 6	1	1 01	34 %	4 4	4 C	F 7	4 4	4 (4 0	7 0	- (ח ע	-	4 4	' -	15	TATOT.	STIMI	260

Survey Dates: 10/05/90, 10/10/90

Drainage: EEL RIVER

80
rv
C
ľ
E
22
HH
EE
SEE
DEE
DEE
THE
THE
SER
CDER
CDEE
CDER
CDEE
7
7
CDEE
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

Table 4 - SUMMARY OF MAXIMUM POOL DEPTHS BY POOL HABITAT TYPES

Survey Dates: 10/05/90, 10/10/90

Drainage: EEL RIVER

T D

Confluence: QUAD: SCOTIA

LEGAL DESCRIPTION: TOINROIES21 LATITUDE: 40°27'21" LONGITUDE: 124°4'41"

>=4 FEET	PERCENT	DEPTH OCCURRENCE	0	0	0	0	0	0	0	0	0	0	0
>=4 FEET	MAXIMUM	DEPTH	0	0	0	0	0	0	0	0	0	0	0
3-<4 FOOT	PERCENT	DEPTH OCCURRENCE	0	0	0	0	0	14	0	0	0	0	0
3-<4 FT.	MAXIMUM	DEPTH	0	0	0	0	0	1	0	0	0	0	0
2-<3 FOOT	PERCENT	OCCURRENCE	4	0	25	0	0	0	0	0	0	0	0
2-<3 FT.	MAXIMUM	DEPTH	1	0	7	0	0	0	0	0	0	0	0
1-<2 FOOT 2-<3 FT.	PERCENT	DEPTH OCCURRENCE	33	0	25	100	63	86	0	17	0	75	100
1-<2 FT.	MAXIMUM	DEPTH	00	0	1	2	2	9	0	1	0	Э	1
<1 FOOT	PERCENT	OCCURRENCE	63	100	20	0	38	0	100	83	100	25	0
<1 FOOT	MAXIMUM		15	1	2	0	8	0	, m	S	1	1	0
HABITAT		OCCURRENCE	6	2	1	. м	13	11	1 10	10	7	7	2
TATIAT HABITAT	TYPE		MOD	CBD	L'ST.	1.S. 1	LSBO	DID	dDS.	BPB	BPR	BPL	DPL
STINU	MEASTRED		40	F 7	4 4	+ 0	η α	, ,	- "	, (· -	1 4	

TOTAL UNITS 61

Table 5 - SUMMARY OF MEAN PERCENT COVER BY HABITAT TYPE

Confluence: QUAD: SCOTIA

Survey Dates: 10/05/90, 10/10/90

Drainage: EEL RIVER

LEGAL DESCRIPTION: TOINROIES21 LATITUDE: 40°27'21" LONGITUDE: 124°4'41"

MEAN %	BEDROCK	LEDGES	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MEAN %	BOULDERS B			56	65	0	78	77	72	75	25	44	15	73	30	33	71	0	26	70	0	9
MEAN %	WHITE	WATER		0	6	0	0	0	2	1	r ₂	0	0	3	1	0	1	0	0	10	0	
MEAN %	AQUATIC	VEGETATION		1	0	0	0	1	0	0	0	0	0	0	9	0	0	0	0	0	0	
MEAN %	TERR.	MASS VEGETATION		15	11	0	10	11	16	7	10	3	0	13	9	0	11	0	1	20	0	2
MEAN %	ROOT	MASS		7	1	0	0	1	1	1	0	0	33	3	12	0	0	45	10	0	0	6
MEAN %	LWD			1	8	0	0	2	2	7	10	34	30	2	41	0	12	0	48	0	0	3
MEAN %	SWD			2	3	0	12	4	4	O	40	20	23	80	4	0	1	15	11	0	0	
MEAN %	UNDERCUT	BANKS		0	1	0	0	0	73	0	10	0	0	0	М	0	2	40	4	0	0	
HABITAT	TYPE			LGR	HGR	CAS	GLD	RUN	SRN	MCP	CRP	TST	LSR	LSBo	PLP	SCP	BPB	BPR	BPL	DPL	DRY	
UNITS	MEASURED			28	13	1	10	34	44	24	1	4	2	80	7	т	9	1	4	1	15	

Drainage: EEL RIVER

Table 6 - SUMMARY OF DOMINANT SUBSTRATES BY HABITAT TYPE

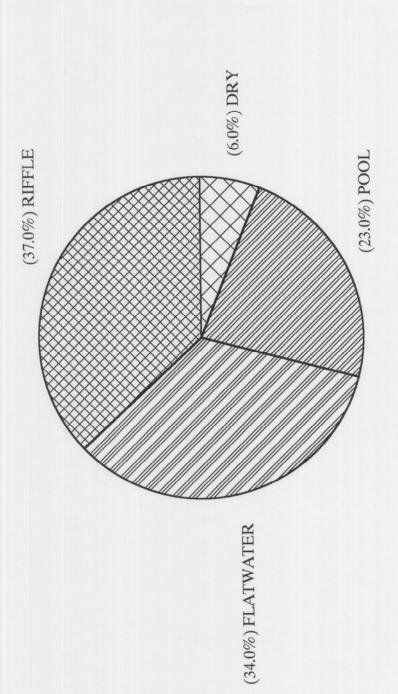
Survey Dates: 10/05/90, 10/10/90

LEGAL DESCRIPTION: TOINROIES21 LATITUDE: 40°27'21" LONGITUDE: 124°4'41" Confluence: QUAD: SCOTIA

PUTINIT	нантнан	# INITS % TOTAL	% TOTAL	# UNITS	% TOTAL	# UNITS	% TOTAL	# UNITS	% TOTAL	# UNITS	% TOTAL	# UNITS	% TOTAL	# UNITS	\$ TOTAL
MENCIPED		SILT/CLAY SILT/CLAY	STLT/CLAY	SAND	SAND	GRAVEL	GRAVEL	SM COBBLE	SM COBBLE LG COBBLE		LG COBBLE	BOULDER	BOULDER	BEDROCK	BEDROCK
MEASONED		DOMINANT	DOMINANT	DOMINANT DOMINANT	OMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT
			c			ر ب	85	57	70	on	11	0	0	0	0
8 7	LGK	0 0	0 0	4 C	4 0	2 0	15	2	15	00	62	1	00	0	0
13	HGK	0 0	0 0		0	0	0	0	0	1	100	0	0	0	0
10	GLD	0	0	-	10	S	20	4	40	0	0	0	0	0	0
34	RUN	1	3	7	9	0	26	15	44	7	21	0	0	0	0
44	SBN	1	2	1	2	12	27	25	57	2	11	0	0	0	0
24	MCP	- 1	4	1	4	9	25	12	20	4	17	0	0	0	0
	CRP	0	0	0	0	0	0	1	100	0	0	0	0	0	0
1 4	TST	0	0	1	25	2	20	0	0	7	25	0	0	0	0
	ISR	0	0	0	0	2	100	0	0	0	0	0	0	0	0
1 00	LSBo	0	0	0	0	3	38	2	25	7	25	1	13	0	0
7	PLP	0	0	1	14	Ŋ	71	1	14	0	0	0	0	0	0
8	SCP	1	33	1	33	1	33	0	0	0	0	0	0	0	0
9	BPB	0	0	7	33	4	67	0	0	0	0	0	0	0	0
, [BPR	0	0	0	0	0	0	1	100	0	0	0	0	0	0
4 4	BPL	0	0	1	25	7	50	1	25	0	0	0	0	0	0
	DPL	0	0	0	0	0	0	0	0	0	0	1	100	0	0
15	DRY	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Summary of Mean Percent Vegetative Cover for Entire Stream

Mean	Mean	Mean	Mean	Mean
Percent	Percent	Percent	Right bank	Left Bank
Canopy	Conifer	Decidous	% Cover	% Cover
ááááááááááááááááá	áááááááááááááááá	áááááááááááááá	áááááááááááááááá	iáááááááááá
66.12	0.00	0.00	0.00	0.00


Mean Percentage of Dominant Substrate

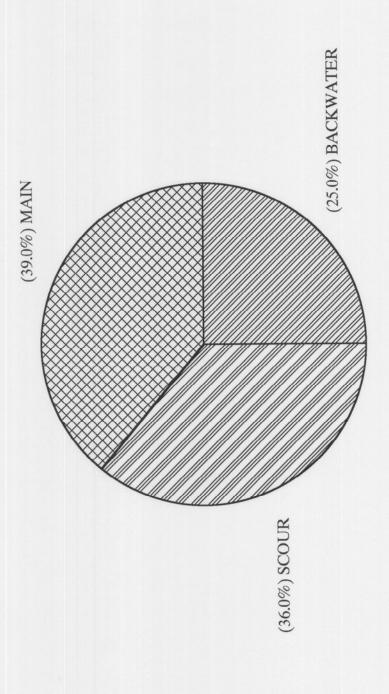
Dominant Class of Substrate	Number Units Right Bank	Number Units Left Bank	Total Mean Percent
Bedrock	0	0	0
Boulder	0	0	0
Cobble/Gravel	0	0	0
Silt/clay	0	0	0


Mean Percentage of Dominant Vegetation

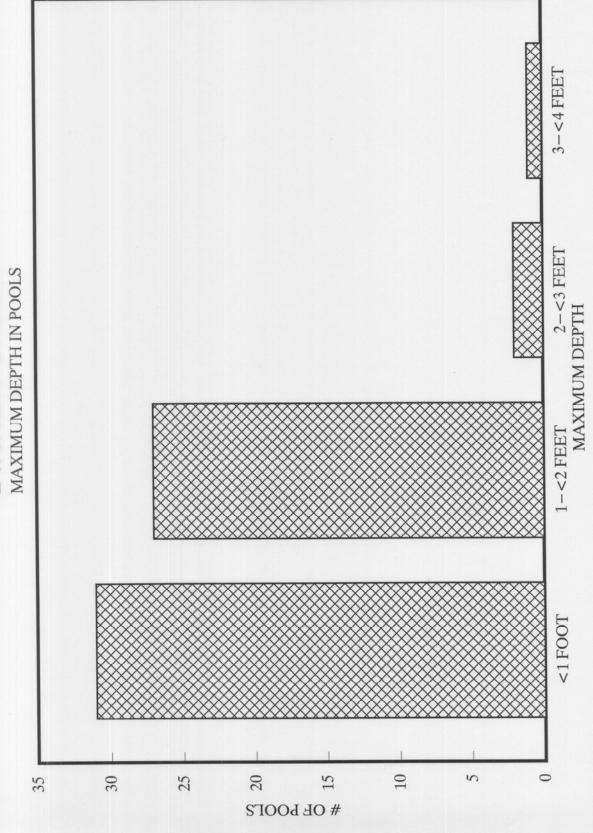
Dominant Class of Vegetation	Number Units Right Bank	Number Units Left Bank	Total Mean Percent
Grass	0	0	0
Brush	0	. 0	0
Decid. Trees	0	0	0
Conif. Trees	0	0	0
No Vegetation	260	260	100

DINNER CREEK HABITAT TYPES BY PERCENT OCCURRENCE

DINNER CREEK HABITAT TYPES BY PERCENT TOTAL LENGTH

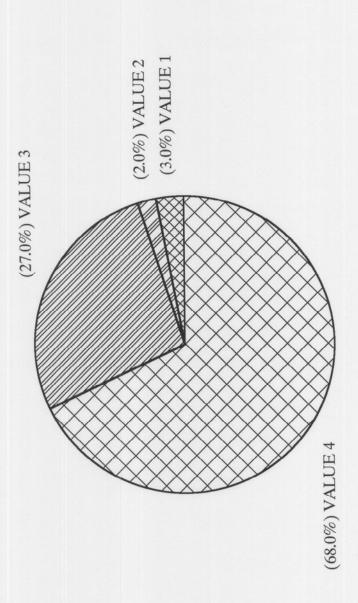


DRY BPL BPB SCP DINNER CREEK HABITAT TYPES BY PERCENT OCCURRENCE PLP LSBo HABITAT TYPE LSL MCP SRN RUN GLD LGR HGR 20 10 15 5 0 30 25 35


PERCENT OCCURRENCE

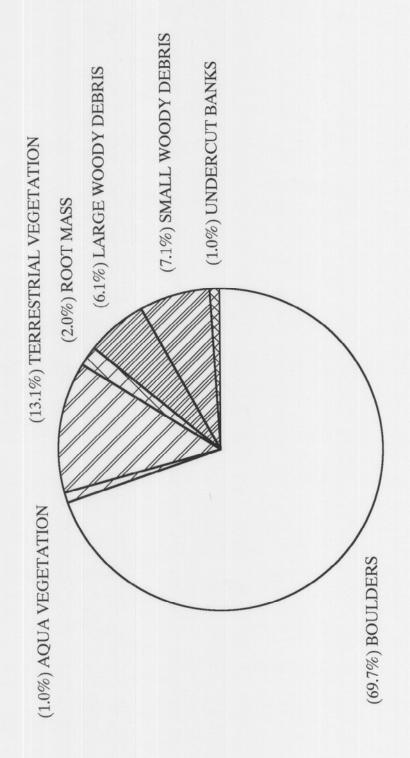
GRAPH 3

DINNER CREEK POOL HABITAT TYPES BY PERCENT OCCURRENCE



GRAPH 5

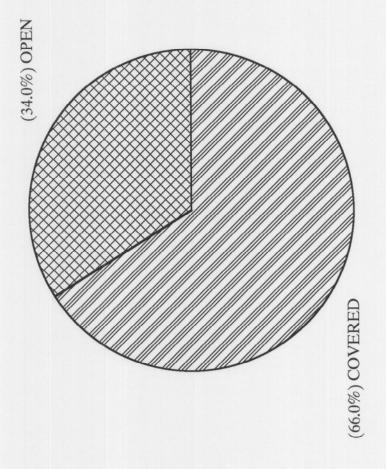
DINNER CREEK PERCENT EMBEDDEDNESS

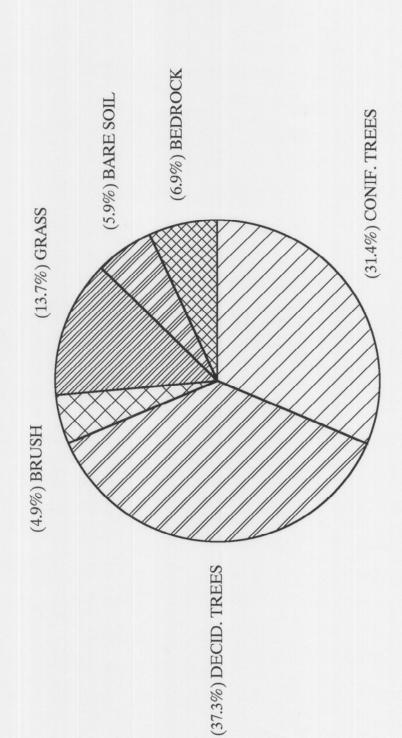


0-25 % 26-50 %

51-75 %

5 % 76-100 %


DINNER CREEK MEAN PERCENT COVER TYPES IN POOLS


LG COBBLE SUBSTRATE COMPOSITION IN LOW GRADIENT RIFFLES SM COBBLE SUBSTRATE **DINNER CREEK** GRAVEL XXXXXXXXXXXX SAND 50 40 30 20 10 09 # OF UNITS

GRAPH8

DINNER CREEK PERCENT CANOPY

DINNER CREEK PERCENT BANK COMPOSITION

