STREAM INVENTORY REPORT # "Slaughterhouse Gulch" #### **INTRODUCTION** A stream inventory was conducted during the summer of 1995 on an unnamed tributary to South Fork Cottaneva Creek locally known as, and herein after referred to as, Slaughterhouse Gulch. The inventory was conducted in two parts: habitat inventory and biological inventory. The objective of the habitat inventory was to document the habitat available to anadromous salmonids in Slaughterhouse Gulch. The objective of the biological inventory was to document the presence and distribution of juvenile salmonid species. There is no known record of adult spawning surveys having been conducted on Slaughterhouse Gulch. The objective of this report is to document the current habitat conditions, and recommend options for the potential enhancement of habitat for chinook salmon, coho salmon and steelhead trout. Recommendations for habitat improvement activities are based upon target habitat values suitable for salmonids in California's north coast streams. #### WATERSHED OVERVIEW Slaughterhouse Gulch is a tributary to South Fork Cottaneva Creek, a tributary to Cottaneva Creek, located in Mendocino County, California (Figure 1). Slaughterhouse Gulch's legal description at the confluence with South Fork Cottaneva Creek is T22N R17W S19. Its location is 39°44'40" north latitude and 123°48'00" west longitude. Slaughterhouse Gulch is an ephemeral stream according to the USGS Westport and Hales Grove 7.5 minute quadrangles. Slaughterhouse Gulch drains a watershed of approximately 1.1 square miles. Summer base runoff is approximately 0.47 cubic feet per second (cfs) at the mouth. Elevations range from about 80 feet at the mouth of the creek to 1800 feet in the headwater areas. Redwood and Douglas fir forest dominates the watershed. The watershed is privately owned and is managed for timber production. Vehicle access exists via private road from the community of Westport. #### **METHODS** The habitat inventory conducted in Slaughterhouse Gulch follows the methodology presented in the *California Salmonid Stream Habitat Restoration Manual* (Flosi and Reynolds, 1991 rev. 1994). The California Conservation Corps (CCC) Technical Advisors and Watershed Stewards Project/AmeriCorps (WSP/AmeriCorps) members that conducted the inventory were trained in standardized habitat inventory methods by the California Department of Fish and Game (DFG). Slaughterhouse Gulch personnel were trained in May, 1995, by Gary Flosi. This inventory was conducted by a two-person team. #### SAMPLING STRATEGY The inventory uses a method that samples approximately 10% of the habitat units within the survey reach (Hopelain, 1994). All habitat units included in the survey are classified according to habitat type and their lengths are measured. All pool units are measured for maximum depth. Habitat unit types encountered for the first time are further measured for all the parameters and characteristics on the field form. Additionally, from the ten habitat units on each field form page, one is randomly selected for complete measurement. ### **HABITAT INVENTORY COMPONENTS** A standardized habitat inventory form has been developed for use in California stream surveys and can be found in the *California Salmonid Stream Habitat Restoration Manual*. This form was used in Slaughterhouse Gulch to record measurements and observations. There are nine components to the inventory form. #### 1. Flow: Flow is measured in cubic feet per second (cfs) at the bottom of the stream survey reach using standard flow measuring equipment, if available. In some cases flows are estimated. # 2. Channel Type: Channel typing is conducted according to the classification system developed and revised by David Rosgen (1985 rev. 1994). This methodology is described in the *California Salmonid Stream Habitat Restoration Manual*. Channel typing is conducted simultaneously with habitat typing and follows a standard form to record measurements and observations. There are five measured parameters used to determine channel type: 1) water slope gradient, 2) entrenchment, 3) width/depth ratio, 4) substrate composition, and 5) sinuosity. #### 3. Temperatures: Both water and air temperatures are measured and recorded at every tenth unit. The time of the measurement is also recorded. Both temperatures are taken in degrees Fahrenheit at the middle of the habitat unit and within one foot of the water surface. #### 4. Habitat Type: Habitat typing uses the 24 habitat classification types defined by McCain and others (1988). Habitat units are numbered sequentially and assigned a type identification number selected from a standard list of 24 habitat types. Dewatered units are labeled "dry". Slaughterhouse Gulch habitat typing used standard basin level measurement criteria. These parameters require that the minimum length of a described habitat unit must be equal to or greater than the stream's mean wetted width. Channel dimensions were measured using hip chains, range finders, tape measures, and stadia rods. All units were measured for mean length; additionally, the first occurrence of each unit type and a randomly selected 10% subset of all units were sampled for all features on the sampling form (*Sampling Levels for Fish Habitat Inventory*, Hopelain, 1995). Pool tail crest depth at each pool unit was measured in the thalweg. All measurements were in feet to the nearest tenth. #### 5. Embeddedness: The depth of embeddedness of the cobbles in pool tail-out reaches is measured by the percent of the cobble that is surrounded or buried by fine sediment. In Slaughterhouse Gulch, embeddedness was ocularly estimated. The values were recorded using the following ranges: 0 - 25% (value 1), 26 - 50% (value 2), 51 - 75% (value 3), 76 - 100% (value 4). Additionally, a rating of "not suitable" (NS) was assigned to tail-outs deemed unsuited for spawning due to inappropriate substrate particle size, having a bedrock tail-out, or other considerations. #### 6. Shelter Rating: Instream shelter is composed of those elements within a stream channel that provide salmonids protection from predation, reduce water velocities so fish can rest and conserve energy, and allow separation of territorial units to reduce density related competition. The shelter rating is calculated for each fully-described habitat unit by multiplying shelter value and percent cover. Using an overhead view, a quantitative estimate of the percentage of the habitat unit covered is made. All cover is then classified according to a list of nine cover types. In Slaughterhouse Gulch, a standard qualitative shelter value of 0 (none), 1 (low), 2 (medium), or 3 (high) was assigned according to the complexity of the cover. Thus, shelter ratings can range from 0-300 and are expressed as mean values by habitat types within a stream. # 7. Substrate Composition: Substrate composition ranges from silt/clay sized particles to boulders and bedrock elements. In all fully-described habitat units, dominant and sub-dominant substrate elements were ocularly estimated using a list of seven size classes and recorded as a one and two respectively. ## 8. Canopy: Stream canopy density was estimated using modified handheld spherical densiometers as described in the *California Salmonid Stream Habitat Restoration Manual*, 1994. Canopy density relates to the amount of stream shaded from the sun. In Slaughterhouse Gulch, an estimate of the percentage of the habitat unit covered by canopy was made from the center of approximately every third unit in addition to every fully-described unit, giving an approximate 30% subsample. In addition, the area of canopy was estimated ocularly into percentages of coniferous or deciduous trees. #### 9. Bank Composition and Vegetation: Bank composition elements range from bedrock to bare soil. However, the stream banks are usually covered with grass, brush, or trees. These factors influence the ability of stream banks to withstand winter flows. In Slaughterhouse Gulch, the dominant composition type (options 1-4) and the dominant vegetation type (options 5-9) of both the right and left banks for each fully-described unit were selected from the habitat inventory form. Additionally, the percent of each bank covered by vegetation was estimated and recorded. #### **BIOLOGICAL INVENTORY** Biological sampling during stream inventory is used to determine fish species and their distribution in the stream. In Slaughterhouse Gulch fish presence was observed from the stream banks, and two sites were electrofished using one Smith-Root Model 12 electrofisher. These sampling techniques are discussed in the *California Salmonid Stream Habitat Restoration Manual*. #### **DATA ANALYSIS** Data from the habitat inventory form are entered into Habitat, a dBASE 4.2 data entry program developed by Tim Curtis, Inland Fisheries Division, California Department of Fish and Game. This program processes and summarizes the data, and produces the following six tables: - Riffle, flatwater, and pool habitat types - Habitat types and measured parameters - Pool types - Maximum pool depths by habitat types - Dominant substrates by habitat types - Mean percent shelter by habitat types Graphics are produced from the tables using Lotus 1,2,3. Graphics developed for Slaughterhouse Gulch include: - Riffle, flatwater, pool habitats by percent occurrence - Riffle, flatwater, pool habitats by total length - Total habitat types by percent occurrence - Pool types by percent occurrence - Total pools by maximum depths - Embeddedness - Pool cover by cover type - Dominant substrate in low gradient riffles - Percent canopy - Bank composition by composition type - Bank vegetation by vegetation type #### HABITAT INVENTORY RESULTS The habitat inventory of June 6 and 7, 1995, was conducted by Chris Coyle (CCC) and Kyle Young (WSP/AmeriCorps). The total length of the stream surveyed was 4,883 feet. Flow was measured at the bottom of the survey reach with a Marsh-McBirney Model 2000 flowmeter at 0.47 cfs on July 31, 1995. Slaughterhouse Gulch is an F4 channel type for the entire 4,883 feet of stream reach surveyed. F4 channels are entrenched, meandering, riffle/pool channels on low gradients with high width/depth ratios and gravel-dominant substrates. Water temperatures ranged from 51 to 56 degrees Fahrenheit. Air temperatures ranged from 51 to 64 degrees Fahrenheit. Table 1 summarizes the Level II riffle, flatwater, and pool habitat types. Based on frequency of **occurrence** there were 43% riffle units, 34% pool units, and 23% flatwater units (Graph 1). Based on total **length** of Level II habitat types there were 57% riffle units, 22% flatwater units, and 22% pool units (Graph 2). Fifteen Level IV habitat types were identified (Table 2). The most frequent habitat types by percent **occurrence** were low-gradient riffles, 40%; runs, 14%; and plunge pools, 14% (Graph 3). Based on percent total **length**, low-gradient riffles made up 54%, step runs 13%, and runs 9%. A total of 77 pools were identified (Table 3). Scour pools were most frequently encountered at 52% and comprised 47% of the total length of all pools (Graph 4). Table 4 is a summary of maximum pool depths by pool habitat types. Depth is an indicator of pool quality. Eighteen of the 77 pools (23%) had a depth of two feet or greater (Graph 5). The depth of cobble embeddedness was estimated at pool tail-outs. Of the 65 pool tail-outs measured, 2 had a value of 1 (3.1%); 18 had a value of 2 (27.7%); 45 had a value of 3 (69.2%); and none had a value of 4 (0%) (Graph6). On this scale, a value of 1 indicates the highest quality of spawning substrate. A shelter rating was calculated for each habitat unit and expressed as a mean value for each habitat type within the survey using a scale of 0-300. Pool habitat types had a mean shelter rating of 37, and riffle habitats had a mean shelter rating of 32 (Table 1). Of the pool types, the main channel pools had the highest mean shelter rating at 46. Scour pools had a mean shelter rating of 37 (Table 3). Table 5 summarizes mean percent cover by habitat type. Large woody debris is the dominant cover type in Slaughterhouse Gulch. Graph 7 describes the pool cover in Slaughterhouse Gulch. Table 6 summarizes the dominant substrate by habitat type. Gravel was the dominant substrate observed in 4 of the 7 low gradient riffles measured (57%). Small cobble was the next most frequently observed dominant substrate type and occurred in 43% of the low gradient riffles (Graph 8). The mean percent canopy density for the stream reach surveyed was 96%. The mean percentages of deciduous and coniferous trees were 66% and 34%, respectively. Graph 9 describes the canopy in Slaughterhouse Gulch. For the stream reach surveyed, the mean percent right bank vegetated was 87%. The mean percent left bank vegetated was 89%. The dominant elements composing the structure of the stream banks consisted of 0% bedrock, 1.4% boulder, 71.4% cobble/gravel, and 27.1% sand/silt/clay (Graph 10). Coniferous trees, including down trees, logs, and root wads, were the dominant vegetation type observed in 43% of the units surveyed. Additionally, 23% of the units surveyed had deciduous trees as the dominant vegetation type (Graph 11). #### **BIOLOGICAL INVENTORY RESULTS** Two sites were electrofished on July 6 and 31, 1995, in Slaughterhouse Gulch. The units were sampled by Craig Mesman (CCC) and Kyle Young (WSP/AmeriCorps). The first site sampled included habitat units 204-208, two plunge pools, two low-gradient riffles, and a log-enhanced backwater pool approximately 4,305 feet from the confluence with South Fork Cottaneva Creek. This site had a length of 107 feet. The unit yielded four 1+ steelhead, one tailed frog tadpole, and fifteen Pacific giant salamanders. The second site included habitat units 210-216, a series of runs, riffles, and pools located approximately 4,422 feet above the creek mouth. This site had a length of 147 feet. The site yielded one 1+ steelhead and six Pacific giant salamanders. ## DISCUSSION Slaughterhouse Gulch is an F4 channel type for the entire 4,883 feet of stream surveyed. The suitability of F4 channel types for fish habitat improvement structures is as follows: good for bank-placed boulders; fair for low-stage weirs, single and opposing wing deflectors, channel constrictors, and log cover; and poor for medium-stage weirs and boulder clusters. The water temperatures recorded on the survey days June 6 and 7, 1995, ranged from 51 to 56 degrees Fahrenheit. Air temperatures ranged from 51 to 64 degrees Fahrenheit. This is a good water temperature range for salmonids. To make any further conclusions, temperatures would need to be monitored throughout the warm summer months, and more extensive biological sampling would need to be conducted. Flatwater habitat types comprised 22% of the total **length** of this survey, riffles 57%, and pools 22%. The pools are relatively shallow, with only 18 of the 77 (23.4%) pools having a maximum depth greater than 2 feet. In general, pool enhancement projects are considered when primary pools comprise less than 40% of the length of total stream habitat. In first and second order streams, a primary pool is defined to have a maximum depth of at least two feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. Installing structures that will increase or deepen pool habitat is recommended for locations where their installation will not be threatened by high stream energy, or where their installation will not conflict with the modification of the log debris accumulations (LDA's) in the stream. The LDA's in the system are retaining needed gravel. Any necessary modifications to them should be done with the intent of metering the gravel out to downstream reaches that will trap the gravel for future spawning use. Forty-five of the 65 pool tail-outs measured had embeddedness ratings of 3 or 4. Only two had a 1 rating. Cobble embeddedness measured to be 25% or less, a rating of 1, is considered to indicate good quality spawning substrate for salmon and steelhead. In Slaughterhouse Gulch, sediment sources should be mapped and rated according to their potential sediment yields, and control measures should be taken. The mean shelter rating for pools was low with a rating of 37. The shelter rating in the flatwater habitats was lower at 10. A pool shelter rating of approximately 100 is desirable. The relatively small amount of cover that now exists is being provided primarily by large woody debris in all habitat types. Additionally, small woody debris contributes a small amount. Log and root wad cover structures in the pool and flatwater habitats are needed to improve both summer and winter salmonid habitat. Log cover structure provides rearing fry with protection from predation, rest from water velocity, and also divides territorial units to reduce density related competition. All of the seven low gradient riffles measured had gravel or small cobble as the dominant substrate. This is generally considered good for spawning salmonids. The mean percent canopy density for the stream was 96%. This is a relatively high percentage of canopy. In general, revegetation projects are considered when canopy density is less than 80%. The percentage of right and left bank covered with vegetation was high at 87% and 89%, respectively. In areas of stream bank erosion or where bank vegetation is not at acceptable levels, planting endemic species of coniferous and deciduous trees, in conjunction with bank stabilization, is recommended. #### RECOMMENDATIONS - 1) Slaughterhouse Gulch should be managed as an anadromous, natural production stream. - 2) Where feasible, design and engineer pool enhancement structures to increase the number of pools. This must be done where the banks are stable or in conjunction with stream bank armor to prevent erosion. - 3) Increase woody cover in the pools and flatwater habitat units. Adding high quality complexity with woody cover is desirable and in some areas the material is locally available. - 4) Active and potential sediment sources related to the road system need to be identified, mapped, and treated according to their potential for sediment yield to the stream and its tributaries. - 5) Inventory and map sources of stream bank erosion and prioritize them according to present and potential sediment yield. Identified sites, like the site at 2,369', should then be treated to reduce the amount of fine sediments entering the stream. - The limited water temperature data available suggest that maximum temperatures are within the acceptable range for juvenile salmonids. To establish more complete and meaningful temperature regime information, 24-hour monitoring during the July and August temperature extreme period should be performed for 3 to 5 years. - 7) There are several log debris accumulations present on Slaughterhouse Gulch that are retaining large quantities of fine sediment. The modification of these debris accumulations is desirable, but must be done carefully, over time, to avoid excessive sediment loading in downstream reaches. #### PROBLEM SITES AND LANDMARKS The following landmarks and possible problem sites were noted. All distances are approximate and taken from the beginning of the survey reach. | Position | | |----------|----------------------------------------------------------------------------------------------------------------| | (ft): | Comments: | | 0' | Begin survey at confluence with South Fork Cottaneva Creek. Channel type is F4. | | 743' | Right bank tributary. Estimated flow <2 gallons per minute (gpm). Not accessible to fish (NAF). | | 1284' | Right bank seep. | | 1479' | LDA 6' high x 20' wide x 10' long retaining gravel 6' deep x 15' wide at base. No jump pool. Possible barrier. | | 2369' | Right bank erosion 7' high x 30' long contributing fines. | | 2473' | LDA. Possible barrier. | |-------|-----------------------------------------------------------------------------------------------------------------------------------------| | 3964' | LDA. | | 4401' | Two embedded logs with inadequate notching create 6' jump with no landing area. | | 4459' | LDA 4' high x 30' wide x 10' long retaining gravel 4' deep x 12' wide at base. Possible barrier. | | 4468' | Left bank erosion 6' high x 15' long contributing gravel and fines. | | 4883' | End of survey due to increased gradient, presence of unmodified barriers, and large amount of sediment in storage above surveyed reach. | # **REFERENCES** - Flosi, G., and F. Reynolds. 1994. California salmonid stream habitat restoration manual, 2nd edition. California Department of Fish and Game, Sacramento, California. - Hopelain, J. 1995. Sampling levels for fish habitat inventory, unpublished manuscript. California Department of Fish and Game, Inland Fisheries Division, Sacramento, California. # **LEVEL III and LEVEL IV HABITAT TYPE KEY** | HABITAT TYPE | LETTER | NUMBER | |-------------------------------------------------|-----------------|------------| | | | | | RIFFLE Low Gradient Riffle | [LGR] | 1.1 | | High Gradient Riffle | [HGR] | 1.1 | | | [11011] | | | CASCADE | | | | Cascade | [CAS] | 2.1 | | Bedrock Sheet | [BRS] | 2.2 | | FLATWATER | | | | Pocket Water | [POW] | 3.1 | | Glide | [GLD] | 3.2 | | Run | [RUN] | 3.3 | | Step Run | [SRN] | 3.4 | | Edgewater | [EDW] | 3.5 | | MAIN CHANNEL POOLS | | | | Trench Pool | [TRP] | 4.1 | | Mid-Channel Pool | [MCP] | 4.2 | | Channel Confluence Pool | [CCP] | 4.3 | | Step Pool | [STP] | 4.4 | | SCOUR POOLS | | | | Corner Pool | [CRP] | 5.1 | | Lateral Scour Pool - Log Enhanced | [LSL] | 5.2 | | Lateral Scour Pool - Root Wad Enhanced | [LSR] | 5.3 | | Lateral Scour Pool - Bedrock Formed | [LSBk] | 5.4 | | Lateral Scour Pool - Boulder Formed Plunge Pool | [LSBo]
[PLP] | 5.5
5.6 | | Trunge 1 001 | [1 են] | 3.0 | | BACKWATER POOLS | | | | Secondary Channel Pool | [SCP] | 6.1 | | Backwater Pool - Boulder Formed | [BPB] | 6.2 | | Backwater Pool - Root Wad Formed | [BPR]
[BPL] | 6.3
6.4 | | Backwater Pool - Log Formed Dammed Pool | [DPL] | 6.5 | | | [22 22] | 0.5 |