CALIFORNIA DEPARTMENT OF FISH AND GAME STREAM INVENTORY REPORT Franz Creek

Report Revised April 14, 2006 Report Completed 1998 Assessment Completed 1997

INTRODUCTION

A stream inventory was conducted during the summer of 1997 on Franz Creek. The inventory was conducted in two parts: habitat inventory and biological inventory. The objective of the habitat inventory was to document the amount and condition of available habitat to fish, and other aquatic species with an emphasis on anadromous salmonids in Franz Creek. The objective of the biological inventory was to document the salmonid and other aquatic species present and their distribution.

The objective of this report is to document the current habitat conditions, and recommend options for the potential enhancement of habitat for Chinook salmon, coho salmon and steelhead trout. Recommendations for habitat improvement activities are based upon target habitat values suitable for salmonids in California's north coast streams.

WATERSHED OVERVIEW

Franz Creek is a tributary to Maacama Creek which flows to the Russian River, located in Sonoma County, California (see Franz Creek map, page 2). The legal description at the confluence with Maacama Creek is T9N, R8W, S20. Its location is 38°36'45" N. latitude and 122°46'17" W. longitude. Year round vehicle access exists from HWY 128 to Chalk Hill Rd, and HWY 128 to Franz Valley Road.

Franz Creek and its tributaries drain a basin of approximately 18.9 square miles. Franz Creek is a third order stream and has approximately 17.7 miles of blue line stream, according to the USGS Healdsburg and Mark West Springs 7.5 minute quadrangles. Major tributaries include the Thorton Branch which is described in stream report. Summer flow was separate measured as approximately 0.046 cfs at Bridge #2. Elevations range from about 365 feet at the mouth of the creek to 1180 feet in the headwaters. With the exception of the first mile, which is a flat valley, the creek flows through a low gradient U-shaped canyon. Vineyards and other agriculture dominate the watershed, but there are zones of grassland and oak-woodland in the upper watershed. The predominant vegetation throughout the area is second growth redwood, oak, alder, bay, manzanita, pine, madrone, and Douglas fir. The watershed is entirely privately owned.

METHODS

The habitat inventory conducted in Franz Creek follows the methodology presented in the <u>California Salmonid Stream Habitat</u> <u>Restoration Manual</u> (Flosi et al, 1997). The Americorps Volunteers that conducted the inventory were trained in standardized habitat inventory methods by the California Department of Fish and Game (DFG). This inventory was conducted by a two person team and was supervised by Bob Coey, Russian River Basin Planner (DFG).

HABITAT INVENTORY COMPONENTS

A standardized habitat inventory form has been developed for use in California stream surveys and can be found in the California Salmonid Stream Habitat Restoration Manual. This form was used in Franz Creek to record measurements and observations. There are flow, nine components to the inventory form: channel type, habitat embeddedness, shelter temperatures, type, rating, canopy, and bank composition. See parent substrate composition, stream report for discussion of specific methods used.

1. Flow:

Flow is measured in cubic feet per second (cfs) at the bottom of the stream survey reach using standard flow measuring equipment, if available. In some cases flows are estimated. Flows were also measured or estimated at major tributary confluences.

2. Channel Type:

Channel typing is conducted according to the classification system developed and revised by David Rosgen (1985 rev. 1994). This methodology is described in the California Salmonid Stream Habitat Channel typing is conducted simultaneously Restoration Manual. with habitat typing and follows a standard form to record measurements and observations. There are five measured parameters used to determine channel type: 1) water slope gradient, 2) entrenchment, 3) width/depth ratio, 4) substrate composition, and 5) sinuosity.

3. Temperatures:

Water and air temperatures, and time, are measured by crew members with hand held thermometers and recorded at each tenth unit typed. Temperatures are measured in Fahrenheit at the middle of the habitat unit and within one foot of the water surface. Temperatures are also recorded using remote Temperature recorders which log temperature every two hours, 24 hours/day.

4. Habitat Type:

Habitat typing uses the 24 habitat classification types defined by McCain and others (1988). Habitat units are numbered sequentially and assigned a type identification number selected from a standard list of 24 habitat types. Dewatered units are labeled "DRY". Franz Creek habitat typing used standard basin level measurement These parameters require that the minimum length of a criteria. described habitat unit must be equal to or greater than the stream's mean wetted width. All unit lengths were measured, the first occurrence of each unit type and a additionally, randomly selected 10% subset of all units were completely sampled (length, mean width, mean depth, maximum depth and pool tail crest depth). All measurements were in feet to the nearest tenth.

5. Embeddedness:

The depth of embeddedness of the cobbles in pool tail-out reaches is measured by the percent of the cobble that is surrounded or buried by fine sediment. In Franz Creek, embeddedness was visually estimated. The values were recorded using the following ranges: 0 - 25% (value 1), 26 - 50% (value 2), 51 - 75% (value 3), 76 - 100% (value 4). Additionally, a rating of "not suitable" (NS) was assigned to tail-outs deemed unsuited for spawning due to inappropriate substrate particle size, having a bedrock tail-out, or other considerations.

6. Shelter Rating:

Instream shelter is composed of those elements within a stream channel that provide salmonids protection from predation, reduce water velocities so fish can rest and conserve energy, and allow separation of territorial units to reduce density related competition. Using an overhead view, a quantitative estimate of the percentage of the habitat unit covered is made. All shelter is then classified according to a list of nine shelter types. In Franz Creek, a standard qualitative shelter value of 0 (none), 1 (low), 2 (medium), or 3 (high) was assigned according to the complexity of the shelter. The shelter rating is calculated for each habitat unit by multiplying shelter value and percent Thus, shelter ratings can range from 0-300, covered. and are expressed as mean values by habitat types within a stream.

7. Substrate Composition:

Substrate composition ranges from silt/clay sized particles to boulders and bedrock elements. In all fully measured habitat units, dominant and sub-dominant substrate elements were visually estimated using a list of seven size classes.

8. Canopy:

Stream canopy density was estimated using modified handheld spherical densiometers as described in the <u>California Salmonid</u> <u>Stream Habitat Restoration Manual</u>, 1997. Canopy density relates to the amount of stream shaded from the sun. In Franz Creek, an estimate of the percentage of the habitat unit covered by canopy was made from the center of approximately every third unit in addition to every fully-described unit, giving an approximate 30% sub-sample. In addition, the area of canopy was estimated visually into percentages of evergreen or deciduous trees.

9. Bank Composition:

Bank composition elements range from bedrock to bare soil. However, the stream banks are usually covered with grass, brush, or trees. These factors influence the ability of stream banks to withstand winter flows. In Franz Creek, the dominant composition type and the dominant vegetation type of both the right and left banks for each fully measured unit were selected from the habitat inventory form. Additionally, the percent of each bank covered by vegetation was estimated and recorded.

BIOLOGICAL INVENTORY

Biological sampling during stream inventory is used to determine fish species and their distribution in the stream. Biological inventory is conducted using one or more of three basic methods: 1) stream bank observation, 2) underwater observation, 3) electrofishing. These sampling techniques are discussed in the California Salmonid Stream Habitat Restoration Manual.

DATA ANALYSIS

Data from the habitat inventory form are entered into <u>Habitat</u>, a dBASE IV data entry program developed by Tim Curtis, Inland Fisheries Division, California Department of Fish and Game. This program processes and summarizes the data, and produces the following tables and appendices:

- Riffle, flatwater, and pool habitat types
- Habitat types and measured parameters
- Pool types
- Maximum pool depths by habitat types
- Shelter by habitat types
- Dominant substrates by habitat types
- Vegetative cover and dominant bank composition
- Fish habitat elements by stream reach

Graphics are produced from the tables using Lotus 1,2,3. Graphics developed for Franz Creek include:

- Level II Habitat Types by % Occurrence and % Total Length
- Level IV Habitat Types by % Occurrence
- Pool Habitat Types by % Occurrence
- Maximum Depth in Pools
- Pool Shelter Types by % Area
- Substrate Composition in Low Gradient Riffles
- Percent Cobble Embeddedness by Reach
- Mean Percent Canopy
- Mean Percent Canopy by Reach
- Percent Bank Composition and Bank Vegetation

HISTORICAL STREAM SURVEYS:

The Department of Fish and Game conducted a survey of Franz Creek on August 13 and 14, 1973. This survey was a complete survey that started at the mouth and ended at the headwaters. At the time of the survey, the creek was intermittent throughout. About one-half of the entire stream length was dry. The flow was estimated to be less than 0.5 cfs in flowing sections. The water temperatures ranged from $63^{\circ}F$ to $75^{\circ}F$ and the air temperatures ranged from $76^{\circ}F$ to $84^{\circ}F$.

The substrate consisted of 45% cobble/gravel, 25% silt, and 30% sand throughout the stream. Some boulders were observed in the middle section of the stream. From the mouth to one mile above the mouth, 25% of the streambed was estimated to be suitable for spawning, only 10% on the above upper stream reach. Stagnant pools were present throughout the entire length fed by underground seepage. A small amount of shelter was provided by undercut banks and rocks.

In the upper reaches, two log jams and a six-foot high falls, all passable to adult steelhead during high water, were noted. Two diversions were also observed 1/4 mile above Chalk Hill Road bridge. Both utilized 6-inch pipes with fish screens and pumps. A third diversion was noted 1/2 mile above the bridge which was removing underground water. Turbid water was noted, possibly due to livestock pollution and naturally occurring minerals.

HABITAT INVENTORY RESULTS

ALL TABLES AND GRAPHS ARE LOCATED AT THE END OF THE REPORT *

The habitat inventory of Franz Creek was conducted from 09/10/97 to 11/09/97 by S. Nossaman, S. Carey, M. Miller and S. Tarbell (AmeriCorps). The survey began at the mouth and extended up Franz

Creek to the end of landowner access permission. The total length of the stream surveyed was 53,904 feet, with an additional 1,523 feet of side channel.

Flow was estimated to be 0.046 cfs during the survey period.

This section of Franz Creek has nine channel types: from the mouth to 16155 feet an F4; next 1954 feet an F2; next 5136 feet an F3; next 3900 feet a D3; next 12655 feet an F3; next 5605 feet a B3; next 786 feet a G2; next 2378 feet a B3 and the upper 5336 feet a G1.

F4 channel types are entrenched meandering riffle/pool channels on low gradients (<2%) with a high width/depth ratio and a predominantly gravel substrate.

F2 channel types are similar with a predominately boulder substrate.

F3 channel types are similar with a predominantly cobble substrate.

D3 channel types are multiple channels with longitudinal and transverse bars. They have a very wide low gradient (<2%) channel with eroding banks and a predominantly cobble substrate.

B3 channel types are moderately entrenched, moderate gradient (2-4%), riffle dominated channels, with infrequently spaced pools, a very stable plan and profile, stable banks and have a predominantly cobble substrate.

G2 channel types are characterized as well entrenched "gully" step-pool channels with a low width/depth ratio, a moderate gradient (2-4%) and a predominantly boulder substrate.

G1 channel types are similar with a predominantly bedrock substrate.

Water temperatures during the field inventory ranged from $45^{\circ}F$ to $71^{\circ}F$. Air temperatures ranged from $44^{\circ}F$ to $79^{\circ}F$. Summer temperatures were also measured using remote temperature recorders placed in pools (see Temperature Summary graphs at end of report). A recorder at the Franz Valley Road Bridge (Bridge #3) logged temperatures from July 1 - September 20, 1997. The highest temperature recorded was $68^{\circ}F$ in July and the lowest was $58^{\circ}F$ in September. Another recorder near Franz Valley School Road Bridge (Bridge #6) logged temperatures every 2 hours from July 1 - September 20, 1997. The highest temperature from July 1 - September 20 hours from July 1 - September 20, 1997.

July and the lowest was 57°F in September.

Table 1 summarizes the Level II riffle, flatwater, and pool habitat types. Based on frequency of **occurrence** there were 42% pool units, 38% flatwater units, 10% riffle units, and 10% dry streambed units. Based on total **length** there were 46% flatwater units, 28% pool units, 21% dry streambed units, and 5% riffle units (Graph 1).

Five hundred thirty three habitat units were measured and 23% were completely sampled. Seventeen Level IV habitat types were identified. The data is summarized in Table 2. The most frequent habitat types by percent **occurrence** were runs at 25%, mid-channel pools 14%, step runs 11% and root wad scour pools 11% (Graph 2). By percent total **length**, runs made up 31%, dry streambed 21%, step runs 13%, and mid-channel pools 10%.

Two hundred twenty six pools were identified (Table 3). Scour pools were most often encountered at 62%, and comprised 62% of the total length of pools (Graph 3).

Table 4 is a summary of maximum pool depths by pool habitat types. Pool quality for salmonids increases with depth. Seventy five of the 226 pools (33%) had a depth of three feet or greater (Graph 4). These deeper pools comprised 12% of the total length of stream habitat.

A shelter rating was calculated for each habitat unit and expressed as a mean value for each habitat type within the survey using a scale of 0-300. Pool types had the highest shelter rating at 22. Riffle had the lowest rating with 4 and flatwater rated 12 (Table 1). Of the pool types, the scour pools had the highest mean shelter rating at 23, main channel pools rated 21, and backwater pools rated 10 (Table 3).

Table 5 summarizes fish shelter by habitat type. By percent area, the dominant pool shelter types were root masses at 28%, small woody debris 18%, boulders 15%, and terr. vegetation 14%. Graph 5 describes the pool shelter in Franz Creek.

Table 6 summarizes the dominant substrate by habitat type. Gravel was the dominant substrate observed in six of the fourteen low gradient riffles measured. Small cobble was dominant in four of the low gradient riffles (Graph 6).

No mechanical gravel sampling was conducted in 1997 surveys due to inadequate staffing levels.

The depth of cobble embeddedness was estimated at pool tail-outs.

7

Of the 223 pool tail-outs measured, fifteen had a value of 1 (7%); 73 had a value of 2 (33%); 68 had a value of 3 (30%); and 67 had a value of 4 (30%). On this scale, a value of one is best for fisheries.

The mean percent canopy density for the stream reach surveyed was 71%. The mean percentages of deciduous and evergreen trees were 63% and 37%, respectively. Graph 8 describes the canopy for the entire survey.

For the entire stream reach surveyed, the mean percent right bank vegetated was 54% and the mean percent left bank vegetated was 58%. For the habitat units measured, the dominant vegetation types for the stream banks were: 56% deciduous trees, 24% evergreen trees, 10% grass, 9% brush and 1% bare soil. The dominant substrate for the stream banks were: 70% silt/clay/sand, 14% bedrock, 12% cobble/gravel and 4% boulder (Graph 10).

BIOLOGICAL INVENTORY

JUVENILE SURVEYS:

In the August 1973 survey, juvenile Sacramento squawfish were observed at a rate of 100/100' from the mouth to 7.75 miles upstream. Roach were observed at a rate of 25/100' and juvenile suckers were observed at a rate of 10/100'. Bluegills were observed from the mouth to approximately 5.75 miles upstream at a rate of 50/100'. Three juvenile salmonids were also observed in the upper reaches of the creek. Unidentified frogs and salamanders were also observed during the survey.

On 10/22/1997 and 10/31/1997 a recent biological inventory was conducted in four sites of Franz Creek to document fish species and single composition distribution. Each site was pass electrofished using one Smith Root Model 12 electrofisher. Fish from each site were counted by species, and returned to the The air temperature ranged from $64^{\circ}-70^{\circ}F$ and the water stream. temperature from 52°F. to 60°F. The observers were Marc Miller, Paul Campo, April Richards, Stephanie Carey, Todd Parlato (AmeriCorps), and Bob Coey (DFG).

The inventory of Reach 3 was conducted at GPS location 32 (38° 36' 848":122° 43' 057") and continued for approximately 627 feet. In pool, backwater pool, glide, run, low gradient and high gradient riffle habitat types two 0+ steelhead were observed along with more than 60 Chappal, two sculpin, more than 60 Sacramento sucker, 2 Yellow legged frogs, and 3 stickleback.

The inventory of Reach 5 started at the confluence with Bidwell

8

Creek and ended approximately at habitat unit #237. In riffle and pool habitat types nine 0+, and one 1+ steelhead were observed along with eight sculpin, 26 California Roach, one bluegill, and 80 juvenile squawfish.

The inventory of Reach 6 started in habitat unit #387 and continued for approximately 566 feet upstream. In riffle and pool habitat types four 0+, and twenty 1+ steelhead were observed along with 25 Sacramento squawfish, 28 sculpin, two California roach, three Sacramento sucker, and 20 freshwater shrimp.

The inventory of Reach 7 started in habitat unit # 398 and continued for approximately 460 feet upstream. In riffle and pool habitat types ten 0+, and fifteen 1+ steelhead were observed along with 22 Chappal, 22 sculpin, and 1 Sacramento Sucker.

A summary of historical and recent data collected appears in the table below.

Species Observed in Historical and Recent Surveys				
YEARS	SPECIES	SOURCE	Native/Introduced	
1973,1997	Steelhead	DFG	Ν	
1973,1997	Sacramento Squawfish	DFG	N	
1997	Sculpin	DFG	Ν	
1997	Roach	DFG	Ν	
1973,1997	Sacramento Sucker	DFG	Ν	
1997	Three-spine Stickleback	DFG	Ν	
1973,1997	Bluegill	DFG	I	
1997	CA Freshwater Shrimp	DFG	Ν	
1997	Crayfish	DFG	Ν	
1997	California Newt	DFG	N	
1997	Yellow-legged Frog	DFG	Ν	

Historical records reflect that fish rescue/transfer operations occurred in 1959, 1960, 1961, 1962, 1963, 1964, 1966, 1967, 1968, 1969, 1970, and 1971.

Table	Table 2. Summary of fish hatchery - transfers/rescues from Franz Creek					
YEAR	LOCATION	SOURCE	SPECIES	#	SIZE	
1959	Big Sulphur Cr	Franz Cr	SH	3,060	FING	
1959	Sausal Cr	Franz Cr	SH	22,069	FING	
1960	Sausal Cr	Franz Cr	SH	4,529	FING	
1961	Little Sulphur Cr	Franz Cr	SH	5,251	FING	
1962	Big Sulphur Cr	Franz Cr	SH	4,380	FING	
1963	Russian River	Franz Cr	SH	2,740	FING	
1964	Little Sulphur Cr	Franz Cr	SH	2,108	FING	
1964	Russian River	Franz Cr	SH	9,026	FING	
1966	Russian River	Franz Cr	SH	4,120	FING	
1967	Russian River	Franz Cr	SH	1,460	FING	
1968	Russian River	Franz Cr	SH	11,072	FING	
1969	Russian River	Franz Cr	SH	3,906	FING	
1970	Russian River	Franz Cr	SH	5,125	FING	
1971	Russian River	Franz Cr	SH	3,722	FING	

SH = steelhead

ADULT SURVEYS:

A spawning survey was conducted in Franz Creek on 3/3/1998, beginning at Knights Valley Creek crossing and extending 2,340' upstream to the confluence with Bidwell. No fish or redds were observed.

The survey was continued in Franz Creek, 403' downstream of unit #461 and extended 200' upstream of unit #472. One 1+ steelhead was observed however, no redds or adult fish were observed.

Another spawning/carcass survey was continued in Franz Creek on 3/10/1998. This survey began at the Franz Valley School Road Bridge and continued to the confluence with Thorton Creek. One 18"

steelhead carcass was observed, (sex unidentifiable). One redd and one possible redd were observed near the carcass.

DISCUSSION

Franz Creek has nine channel types: F4 (16155 ft.), F2 (1954 ft.), F3 (5136 ft.), D3 (3900 ft.), F3 (12655 ft.), B3 (5605 ft.), G2 (786 ft.), B3 (2378 ft.) and G1 (5336 ft.).

There are 16,155 feet of F4 channel type in Reach #1. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, F4 channel types are good for bank-placed boulders and fair for low-stage weirs, single and opposing wing-deflectors, channel constrictors and log cover.

There are 1954 feet of F2 channel type in Reach #2. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, F2 channel types are fair for low-stage weirs, single and opposing wing-deflectors and log cover.

There are 17791 feet of F3 channel type in Reach #3 and #5. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, F3 channel types are good for bank-placed boulders as well as single and opposing wing-deflectors. They are fair for low-stage weirs, boulder clusters, channel constrictors and log cover. Many site specific projects can be designed within these channel types, especially to increase pool frequency, volume and shelter.

There are 3900 feet of D3 channel type in Reach #4. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, D3 channel types are fair for bank-placed boulders, single and opposing wingdeflectors and channel constrictors. They are poor for low and medium-stage weirs, boulder clusters and log cover.

There are 7983 feet of B3 channel type in Reach #6 and #8. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, B3 channel types are excellent for low-stage plunge weirs, boulder clusters, bank placed boulders, single and opposing wingdeflectors and log cover. They are also good for medium-stage plunge weirs. These channel types have suitable gradients and the stable stream banks that are necessary for the installation of instream structures designed to increase pool habitat, trap spawning gravels, and provide protective shelter for fish.

There are 6122 feet of G1/2 channel type in Reach #7 and #9. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, G1/2 channel types are fair for log cover. Any work considered will require careful design, placement, and construction that must include protection for any unstable banks. The water temperatures recorded on the survey days 09/10/97 to 11/09/97 ranged from $45^{\circ}F$ to $71^{\circ}F$. Air temperatures ranged from $44^{\circ}F$ to $79^{\circ}F$. The warmer water temperatures were recorded in Reach 1. These temperatures, if sustained, are above the threshold stress level ($65^{\circ}F$) for salmonids.

Summer temperatures measured using remote temperature recorders placed in pools ranged from 58° to 68° F near bridge #3 and 57° to 65° F at bridge #6. The Temperature Summary graph shows that for part of the summer (July) the lower watershed exhibited temperatures above the optimal for salmonids.

It is unknown if this thermal regime is typical, but our electrofishing samples found steelhead more frequently in the upper, cooler sample sites. To make any further conclusions, temperatures need to be monitored for a longer period of time through the critical summer months, and more extensive biological sampling conducted.

Pools comprised 28% of the total **length** of this survey. In third and fourth order streams a primary pool is defined to have a maximum depth of at least three feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. In Franz Creek, the pools are relatively shallow with 33% having a maximum depth of at least 3 feet. These pools comprised 12% of the total length of stream habitat. However, in coastal coho and steelhead streams, it is generally desirable to have primary pools comprise approximately 50% of total habitat length.

The mean shelter rating for pools was 22. However, a pool shelter rating of approximately 80 is desirable. The relatively small amount of pool shelter that now exists is being provided primarily by root masses (28%), small woody debris (18%), boulders (15%), and terr. vegetation (14%). Log and root wad cover in the pool and flatwater habitats would improve both summer and winter salmonid habitat. Log cover provides rearing fry with protection from predation, rest from water velocity, and also divides territorial units to reduce density related competition.

Ten of the fourteen low gradient riffles measured (71%) had either gravel or small cobble as the dominant substrate. This is generally considered good for spawning salmonids.

Sixty one percent of the pool tail-outs measured had embeddedness ratings of either 3 or 4. Only 7% had a rating of 1. Cobble embeddedness measured to be 25% or less, a rating of 1, is considered best for the needs of salmon and steelhead. In a reach

comparison, Reaches 8 and 9 had the best ratings and Reaches 1 through 7 had the poorest ratings.

The higher the percent of fine sediment, the lower the probability that eggs will survive to hatch. This is due to the reduced quantity of oxygenated water able to percolate through the gravel, or because of fine sediment capping the redd and preventing fry emergence. In Franz Creek Reaches 1 through 7 sediment sources should be mapped and rated according to their potential sediment yields, and control measures taken.

The mean percent canopy for the survey was 71% and ranged from 53% to 89%. 80% is generally considered desirable. Cooler water temperatures are desirable in the lower reaches of Franz Creek. Elevated water temperatures could be reduced by increasing stream canopy. The large trees required for adequate stream canopy would also eventually provide a long term source of large woody debris needed for instream shelter and bank stability.

SUMMARY

Biological surveys were conducted to document fish distribution and are not necessarily representative of population information. Steelhead were documented consistently during each past survey year. Overall, very few fish were observed during the electrofishing and carcass/spawning surveys. The 1997 fall electro-fish surveys documented minimal 0+ fish indicating unsuccessful spawning in the lower reaches of Franz Creek. Few 1+ fish were observed indicating poor rearing conditions the year before or poor holding-over conditions in general. Fish numbers and quality of habitat generally increases in an upstream direction. Overall, habitat conditions for both steelhead and coho have declined over time.

In general, Reaches 1-5 of Franz Creek are marginal for salmon and steelhead habitat. Some long, deep sections of the stream occur which may be used as rearing habitat, however, shelter is lacking and stream temperatures are high. Little riffle habitat exists for spawning, and what does exist is unsuitable for spawning due to high gravel embeddedness.

Upstream of the Thorton Creek confluence conditions are better, where spawning and rearing habitat exists, canopy shading is higher, although instream shelter is still lacking and stream bank erosion is prevalent due to channel down-cutting. However, many opportunities and alternatives exist for habitat improvement due to the more stable channel type. Reaches 4 and 5 are excellent for many types of low and medium stage instream enhancement structures. Many site specific projects can be designed within this channel type, especially to increase pool frequency, volume and shelter.

The best rearing habitat in the watershed exists within the upper portion of Franz Creek, although spawning gravels are more limited due to the natural geomorphology.

GENERAL RECOMMENDATIONS

- Franz Creek should be managed as an anadromous, natural production stream.
- Recent storms brought down many large trees and other woody debris into the stream, which increased the number and quality of pools since the drought years. This woody debris, if left undisturbed, will provide fish shelter and rearing habitat, and offset channel incision. Many signs of recent and historic tree and log removal were evident in the active during our survey. Efforts to increase flood channel protection or improve fish access in the short run, have led to long term problems in the system. Landowners should be encouraged not to remove woody debris from the stream, except under extreme buildup and only under guidance by a fishery professional.

SPECIFIC FISHERY ENHANCEMENT RECOMMENDATIONS

- 1) Vineyard cross-fencing at habitat units 305 and 325 (Reach 5) inhibits adult migration. Salmonid migration is inhibited until the high flows remove the deer fencing as barriers. A floating fence should be installed at each location in order to allow access for migrating salmonids.
- 2) There are at least three sections (Reaches 1, 2, and 3) where the stream is being impacted from livestock in the riparian zone. Livestock in streams generally inhibit the growth of new trees, exasperate erosion, and reduce summertime survival of juvenile fish by defecating in the water. Alternatives to limit cattle access, control erosion and increase canopy, should be explored with the landowner, and developed if possible.
- 3) Increase the canopy on Franz Creek by planting willow, alder, redwood, and Douglas fir along the stream where shade canopy is not at acceptable levels (portions of Reaches 1,2,3,5,and 6). The reach above the survey section should be assessed for planting and treated as well, since water temperatures throughout are effected from upstream. In many cases, planting will need to be coordinated to follow bank stabilization or upslope erosion control projects.

- 4) Map sources of upslope and in-channel erosion, and prioritize them according to present and potential sediment yield. Identified sites should then be treated to reduce the amount of fine sediments entering the stream. Biotechnical techniques could be utilized in aggraded portions to reclaim floodplain and decrease channel width to the increase riparian vegetation and gravel transport. Near-stream riparian planting along any portion of the stream should be encouraged to provide bank stability and a buffering against agricultural, grazing and urban runoff.
- 5) In Franz Creek, active and potential sediment sources related to the road system need to be mapped, and treated according to their potential for sediment yield to the stream and its tributaries.
- 6) Where feasible, increase woody cover in the pool and flatwater habitat units along the entire stream. Most of the existing shelter is from vegetation and undercut banks. Adding high quality complexity with larger woody cover is Combination cover/scour structures constructed desirable. with boulders and woody debris would be effective in many flatwater and pool locations in the upper reaches. This must be done where the banks are stable (Reaches #6 and #8) or in conjunction with stream bank armor to prevent erosion. In some areas the material is at hand.
- 7) Where feasible, design and engineer pool enhancement structures to increase the number of pools in the lower reaches. This must be done where the banks are stable or in conjunction with stream bank armor to prevent erosion.

PROBLEM SITES AND LANDMARKS - FRANZ CREEK SURVEY COMMENTS

The following landmarks and possible problem sites were noted. All distances are approximate and taken from the beginning of the survey reach.

The Franz Creek habitat survey started 1607 feet from the mouth.

HABITAT UNIT#	STREAM COMMENTS LEN (FT)
1.00	1575 NO ACCESS-Map Wheeled.
2.00	1607 START SURVEY. Dry Tributary left
2 00	Dalik.
3.00	1648 Bank erosion left bank-see form. 0+ SHD(?)
4.00	1851 Dry tributary left bank.
5.00	1869 Juv. squaw, suckers.

6.00	2165	Road crossing. Vehicle tracks in
7 00	2260	Fridence of tree and brush cutting
8 00	2296	Gravel beach right bank
9.00	2912	DSC, old car, and gravel beach, on
		right bank. Erosion and dry trib.
		on left bank.
11.00	4698	Water diversion, trail, and 20'
		concrete rock wall on right bank.
		Erosion (form) left bank. Dry trib.
		(2) left bank.
12.00	4711	High amount of silt in water.
13.00	4812	Bridge #2. Wire fence across creek.
14.00	4858	Cow feces in creek.
15.00	4938	Juv. roach, suckers. Cow feces.
16.00	5010	Cow feces
19.00	5567	DSC right bank. Rip-rap left bank
01 00	6010	(150'Long X 10' High).
21.00	6012	Dry trib. and DSC right bank. Next
22.00		to Inomas Road, leit bank.
22.00	6055	Boulder rip-rap on left bank.
24.00	0309	trap in greek bed
28 00	7292	Cravfish frogs
29.00	7272	Cow feces Streambed aggraded-base
27.00	1121	of alders covered with up to 3' of
		gravel.
30.00	7759	Crawdad. 8" culvert left bank.
		Water covered with gray film.
		Vineyards on left bank. Rip rap
		(100'Long X 10'High) left bank.
31.00	8342	DSC right bank. Vineyard left bank.
33.00	8697	Drainage pipe with small amount of
		water, left bank.
38.00	9640	DSC, right bank. Cow feces
		throughout channel.
39.00	9693	Green, cloudy water. Blowout, right
40.00	10007	bank-sheet.
40.00	10237	Small dry trib., right bank. Leit
41 00	10226	Cartor grako. Water ig dark brown
41.00	10320	bly from gowg Fresh water
		chaile
42 00	10665	Fence across creek Wide open
12.00	10005	channel with very little
		vegetation. Drv trib. right bank.
43.00	10739	Lots of silt. Road right bank
		(private-no access). Dirt piled on
		right bank.
44.00	10793	Row of young alder for 200', on

			right bank.
45.	00	10960	DSC, right bank.
48.	00	11197	Water is dark brown. Adult and juv.
			squaw and suckers.
49	0.0	11321	Barn on right bank
50	00	11/20	Craufiah Two dry tribla right
50.	00	11430	Crayiish. Two dry trib's, right
- 1	0.0	11000	Dank.
51.	00	11008	Pink house up on hill, right bank.
			Cow feces.
54.	00	11823	Dry trib., right bank.
55.	00	11888	Large dry trib., right bank.
57.	00	12121	DSC, left bank.
58.	00	12210	DSC, left bank.
59.	00	12411	Cow feces. Old crossing. Water
			diversion pipe across creek.
61.	00	12590	Road crossing, left bank
62	00	12636	-100 -6 squaw
63	00	12050	Dry trib left bank Cow feder
61	00	12007	Dipo hanging over greek
67	00	12020	Prove trailed laft hank DCC laft
07.	00	T2020	bry CLID., LELC DALK. DSC, LELC
<u> </u>	0.0	1 2 0 0 5	bank.
68.	00	13085	DSC, leit bank.
69.	00	13188	DSC, both banks.
70.	00	13225	DSC, both banks.
72.	00	13405	Cow feces.
75.	00	13558	Great blue heron. Crawdad. Dry
			trib., right bank.
76.	00	13633	Dry trib., right bank. DSC, left
			bank.
77.	00	13734	DSC, left bank.
78.	00	13951	DSC, left bank.
79.	00	14038	Cow feces.
82.	00	14220	Juv. roach and squaw. Old slide:
	00		$85'I_X 75'H X 15'D on left bank$
84	00	14360	Cow feces
86	00	1//50	Cow feder
ο <i>ι</i> .	00	1/057	Loft bank arodod down to bodrock
94.	00	1400/	top 1/2 active
0 5	0.0	14000	top 1/5 active.
95.	00	14909	iwo small drainage trib's, leit
~ -		1 4 9 9 5	bank.
97.	00	14985	Large dry trib., left bank-gravel
			built up at mouth.
101.	00	15352	Small dry trib., left bank.
106.	00	15676	Slide on right bank-see sheet.
107.	00	15715	Crayfish.
109.	00	15882	Cow feces throughout channel.
110.	00	15951	Dry trib., right bank.
111.	00	16001	Cows in creek.
112	00	16097	Erosion on right bank-see sheet
	- •	/	River otter scat crawfish
			The second board, standard

	pinchers. Dry trib., right bank.
113.00 161	62 Fresh water snails. Sunfish, 100's
	of squaw, roach, suckers.
114.10 163	62 Yellow-legged frog
115.00 164	22 1+ SHD (?)
116.00 166	09 Dry trib., right bank.
118.00 167	06 Dozens of tiny frogs
122 00 170	12 Dry trib right bank
123 00 171	12 Dry trib, right bank.
134 00 177	41 Slide on right bank: 2014 X 1011 X
134.00 1/7	FID Vory gradible bank
127 00 101	17 Dry trib graded at mouth right
137.00 181	hank
120 00 101	Dallk.
138.00 181	72 Dry side-channel, right bank.
140.00 183	42 River otter scat.
141.00 183	67 Dry trib., left bank.
142.00 184	36 Dry trib., left bank.
145.00 187	98 Dry trib., right bank. Blow out
	left bank:35'L X 30'H X 20'D.
146.00 188	65 Right bank is actively eroding
	shale and fines.
147.00 188	94 Dry trib, right bank.
151.00 192	66 Dry trib., right bank.
152.00 193	13 Property fence across creek. Dry
	trib., left bank.
153.00 196	53 Dry trib., right bank. Active
	slide, left bank: 50% bedrock,
	200'L X 75'H X 15'D.
154.00 198	62 Dry trib., left bank.
155.00 199	05 100's of juy. Western Toads on
	banks.
158.00 202	47 Dry trib. right bank.
159 00 203	33 Cow feces
160 00 203	70 Fence right bank
161 00 204	65 Fence right bank (Unit #161
101.00 204	through #169)
162 00 205	21 = 50(+/-) Erogg
164 00 207	19 Divor ottor goat
166.00 207	10 RIVER OLLER SCal.
100.00 208	bi Erosion derivering lines and state,
1 (7 00 000	IELL DANK.
167.00 209	09 Dry trib., right bank.
168.00 211	UI Tiny worms in tubes on creek
1.5.0.0.0.0.1.0	bottom, 1,000+.
169.00 212	23 Juv. roach and squaw.
170.00 216	78 Dry trib., left bank. Cow feces.
172.00 218	67 Cow feces.
176.00 221	25 Dry trib., right bank.
178.00 223	68 Dry side-channel, right bank.
179.00 224	18 Road next to creek, left bank. Dry
	trib., left bank.

180.00	22509	Dry side-channel, left bank.
181.00	22931	Dry trib., left bank.
182.00	23104	Fence, right bank- (Unit #182
		through #185)
184.00	23255	Dry trib., right bank.
186.00	23485	Dry trib., right bank. Juv. squaw.
187.00	23630	Dry trib., right bank. Dry
		side-channel, left bank. Fence,
		right bank.
188.00	23744	Dry side-channel, left bank, Fence,
		right bank.
189.00	24069	Fence, right bank. Dry side-channel
	0 0 0 0	both banks.
189 30	24069	Dry trib right bank with cattle
107.30	21007	fence at mouth No fish in pool
191 00	24212	Poad left bank
192 00	24374	Road left bank. Cattle trails on
192.00	213/1	left bank
102 00	21610	Cmall dru trib right bank Dru
193.00	24010	small dry trib., right bank. Dry
102 20	24610	Draw gide ghannel on left hank
193.20	24010	Dry Side-Channel on felt bank.
190.00	24944	Road left balk. Large dry trib.
107 00	25226	Iell Dank.
197.00	25230	Dry trib., right bank. Dry
100 00	05401	Side-channel right bank.
198.00	25431	Small dry trib., right bank.
199.00	25524	Dry trib. on leit bank.
200.00	25/10	wood duck boxes. Road left bank.
201.00	25759	Dry side-channel right bank.
202.00	25954	Small dry trib. right bank.
203.00	26001	Excess silt.
204.00	26209	Blowout on right bank: 250'L X 5'H
204.20	26209	Dry trib. left bank.
204.40	26209	10+ Wood ducks.
205.00	26404	Right bank blow-out- (Unit #205 to
		206): 20'L X 10'H X 10'D. Dry
		side-channel.
208.00	26850	Dry trib. right bank.
209.00	27159	Knight's Valley Ranch (Ogg) road
		crossing.
212.00	27665	Large dry trib. and road left bank.
		Electrical cable crosses creek.
213.00	27958	Water very dark and obscure.
214.00	28116	Rainy Day. Eroded banks along
		entire unit; mostly left bank. Road
		crossing in stream.
218.00	29121	Dry trib. left bank. Franz Valley
		Road Bridge at end of unit (see
		form).
219.00	29216	Franz Valley Road Bridge #3 at
-	-	

		beginning of this unit.
220.00	29722	Bidwell creek mouth/confluence.
221.00	29774	Water mass has increased due to
		rain.
222.00	30150	Boulders placed above FPW for 150'
		on right bank. Possibly going to be
		used for rip rap? Dry trib. at end
		of unit right bank
223 10	30344	Large debris jam extending 75'
223.10	50511	unstream in side channel: 5'H X
		1/ w
227 10	20010	II W Dry trib right bank
227.10	21201	Dry trib. right bank.
229.00	31201	Dry trib. right bank. Old culvert
004 00	21451	laying in creek.
234.00	31451	River otter scat.
238.00	31919	Dry trib. right bank.
241.00	32475	Juv. squaw and suckers.
242.00	32595	Possible substrate change.
257.00	33580	Juv. squaw and suckers.
258.00	34127	Small deposit of orange substance
		(fungus?)
		Located at end of run: 1'L X 1'W.
259.00	34187	Orange fungus on edge at end of
		wetted channel.
261.00	34321	Algae bloom at start of unit.
262.00	34372	12" culvert sticking 8' out from
		right bank.
263.00	34490	Algae.
264.00	34538	Juv. squaw and roach. Algae.
265.00	34700	Algae.
266.00	34744	Juy. squaw and roach. Algae.
268.00	34825	Algae, Juv. roach and squaw.
269.00	35061	Dry trib. left bank-culvert
	00001	sheet-cobble agraded at bottom of
		trib
270 00	35105	Franz Valley Road left bank
271 00	35294	12" culvert left bank Franz Valley
271.00	55271	Road (unit#271 through #273)
272 00	35307	Vertical left bank Dirt road right
272.00	55521	bank
272 00	25667	Vertical left bank 10/11 Dirt read
273.00	33007	wight hope Evens Velley wood left
		right bank. Franz valley road, leit
074 00	25720	Darik.
2/4.00	35729	Dirt road right bank (unit#2/4
0	0 - 0 - 1	through #278).
2/5.00	3586I	Dry trib. Left bank-build up of
0.00	0.001.0	cobble at mouth of trib.
277.00	36019	Fence Left bank (beginning to fall
		into creek).
279.00	36383	Bridge #4. Dirt road right bank.

280.00 285.00	36404 36607	Juv. squaw and roach. Blown out fence, used to cross
286.00	36626	creek. Old culverts (24"W X 2'L), stacked
291.00	36920	in two rows along right bank (75'L) Frog.
296.00	37178	Vineyard right bank, dry
300.00	37479	Crayfish, river otter scat. Vineyards right bank (Unit #300
301.00	37584	Trail with steps left bank. Dry trib. left bank. Boulder rip rap
302.00	37697	Erosion right bank (20' X 20'H X 5'D)
304.00	37958	Polliwog(z). High amount of silt. Concrete rip rap left bank (15'H X
305.00	37976	Vineyard fence across creek at end
306.00	38011	No trees on right bank, covered with blackberry. Vineyard right
307.00	38135	Pile of concrete on right bank (5'H
308.00	38159	Vineyards on both banks. Water diversion pipe hanging across creek. Very silty water. No trees,
309.00	38191	Vineyards both banks (Unit#309
310.00	38231	No trees on left bank, only brush. Water is very silty. Boulder rip rap left bank (20' X 8'). Juv.
311.00	38320	Squaw and roach. Orange fungus.Oil floating on water. Unit clogged with cat-tails and willow. No trees on either
312.00 313.00	38350 38751	Algae blooms. Grass covers creek for first 50'. Algae. 75+ frogs. No trees. 12"
314.00	39091	culvert on right bank. Road crossing. Erosion around road crossing. Vineyard run-off pipe on left bank. Lack of riparian
315.00	39239	vegetation on both banks. Vineyards both sides. Grape and blackberry cover most of right

		bank. Dry trib. left bank. At mouth of trib. there are vineyards and
316.00	39289	House right bank. Vineyards left
317.00	39334	Vineyards left bank. House right
		in creek.
319.00	39549	Houses and vineyards both banks.
320.00	39209	Chemical smell.104' X 12' of wood dumped.
321.00	39671	Vineyards and blackberry on both sides.
322.00	39714	Vineyards left bank. Blackberry both banks. Rip rap left bank: 10' X 20'.
323.00	39750	Concrete blocks on left bank. Vinevards left bank.
324.00	39827	Concrete blocks in creek.
		Blackberry both banks. Rip rap and
325.00	39905	House, right bank. Unit ends with
		deer fence (possible fish barrier).
		End of R and L vineyard property.
326.00	39937	Dry Trib. right bank (fork?). House
327.00	39987	Apple orchard right bank, (Unit
		#327 to #328).
329.00	40114	Rip rap on left bank, falling into creek (30' X 15'). Blackberry on both sides. Film on water.
331.00	40284	12+ wood ducks. Blackberry on left bank (40' X 20')
333.00	40323	Erosion, right bank. blackberry.
334.00	40337	Erosion right bank. blackberry.
335.00	40358	Leaf litter is creating dark colored water. Erosive right bank Blackberry
336.00	40514	Many leaves in water.
337.00	40539	Many leaves in water.
339.00	40700	Bad erosion on right bank.
340.00	40724	Dead deer in creek.
342.00	40950	Leaves cover water-very dark water.
345.00	41071	Huge redwood on right bank (31' diameter)
346.00	41083	Concrete dam at end of unit. Old road on right bank. Orchard right bank (Unit #346 through #350).

348.00	41178	Concrete chunks right bank (15' X 20')
351.00	41266	Large clearing right bank (Unit#351 through #354)
353.00	41434	Scummy film on water. Entering
354 00	41478	Debris Jam (see form) Jux roach
356 00	41680	Tributary enters on right bank
359 00	41913	Trailer left bank
362 00	42149	Slimy gray 2" X 2" modules embedded
502.00	TZTT	in gobble Busted fenge left bank
363 00	12187	Magro-invertebrates seen at pool
303.00	4210/	tail Pustod forge left bark
		Erogino loft bank
261 00	10010	Dustod blown over fense en left
304.00	42243	basted, blown over rende on rend
265 00	1000	Dalik. Elosive lelt Dalik.
305.00	42299	brown over tende. Wild lurkey
266 00	40005	Heard.
366.00	42325	Erosion lelt bank. Blown out lence,
267 00	40200	Tell Dank.
367.00	42390	/ logs span creek. Apple orchards
		(act want)
	40405	$(25' \times 20)$.
368.00	42405	Apple orchards on right bank.
369.00	42433	Erosive right bank. Blackberry both
271 00	40511	Danks.
371.00	42511	Apple orchard on right bank.
		Submerged lence, leit bank.
372.00	42	2626 IU(+/-) IOGS Clustered together.
		#6 Jun roadh and gauan
373 00	12657	Ho. Duv. Idach and Squaw.
373.00	12037	Vineyards on right bank. Vinga
J/I.00	72/39	overs both banks Plackberry
		covers both banks. Blackbelly
376 00	12811	Wet trib (Thorton Branch) right
570.00	TZOTT	here the man E00 F F
		bank. Inorton Temp.=50°F Franz
		Temp.=59°F
377.00	44385	NO ACCESS. Map wheeled.
378.00	44423	Begnal Property begins.
380.00	44512	23' wide concrete road crosses
		creek. Two 8" pipes pass creek
		water under road.
381.00	44531	No flowing water in pool.
383.00	44636	Brush pile (30'L X 20'H) on right
		bank. Brush pile (40'L X 20'H) on
		left bank. 5.5' high pedestrian
		bridge. Trailer left bank. Erosion
		and debris left bank. Metal posts

Bridge

		and wire mesh fence holds back debris on left bank. Piped water
		flowing into creek left bank
384 00	44888	Bank stabilizing 3'6" high metal
501.00	11000	fence continues
385 00	11011	Pank stabilizing 316" high metal
303.00	TIDII	fondo continuos
200 00	45065	Tence continues.
309.00	45005	Erosion, ielt bank.
392.00	45157	Erosion right bank.
393.00	45191	Large (15' X 15') redwood root
	45600	mass.
399.00	45683	Erosion right bank. Juv. squaw.
400.00	45841	I U+SHD. Concrete dam #3.
401.00	458/3	/' X /' orange film on
405 00	46006	water.
405.00	46076	Dry trib., leit bank.
411.00	46431	Minor pedestrian trail crossing.
413.00	46482	Dry trib. right bank.
414.00	46546	Debris jam: about 30'L X 40'W.
		Property access ends.
415.00	48120	NO ACCESS. Map Wheeled.
416.00	48148	Pressey property begins. Huge boulder,
		30' X 30', marks beginning of
		Pressey property.
417.00	48188	Huge boulder covers most of unit.
422.00	48452	Dry Trib. right bank.
425.00	48601	Four white slimy blobs, 4" X 4".
		Film on water.
430.00	48950	Wet trib. at end of unit. Franz
		water temp.=52°F, Intermittent trib.
		water temp.=48°F
435.00	49255	Wet trib. 30' into unit. left bank
100100		Erang Water Temp $-52^{\circ}F$
		Flanz water lemp52 F
		Trib. Water Temp.=50°F
439.00	49419	Bedrock left bank, (unit #439
		through #441).
440.00	49466	Many Horsetails on right bank.
443.00	49523	Spring on right bank.
446.00	49785	Dry trib. left bank.
448.00	49927	Vertical bedrock (15'H) on right bank.
449.00	50066	Dry trib., left bank.
450.00	50112	3'X 2' Orange custard substance at
		mouth of miniature trickle, sulfur
		spring?
451.00	50227	Dry trib., right bank.
452.00	50314	Vertical bedrock wall, (10-20'H),
		left bank, spans unit.
453.00	50361	1+ SHD.

454.00	50410	Vertical bedrock wall, 10-20'H,
456.00	50596	10'-30' Bedrock wall spans 3/4 of
460.00	50815	Two intermittent trib.'s left bank.
		Franz Water Temp.=52°F
		<pre>#1 Intermittent Trib. Water Temp.=60°F #2 Intermittent Trib. Water</pre>
		Temp.=57°F
466.00	51429	10-60' Exposed bedrock wall fills entire left bank of unit.
467.00	51510	Redwood groves on right bank (Unit #467 through #470)
479.00	52053	Dry trib., left bank. Sharp grass, right bank
480.00	52084	SHARP GRASS BOTH BANKS.
481.00	52126	Sharp grass cover creek and banks.
483.00	52265	Sharps grass in creek on mounds of earth.
486.00	52336	Orange slime 2' X 2' (sulfur?)
487.00	52474	Dry trib. right bank. Pieces of old dam. Orange slime 2' X 1'
494.00	53033	Two wet trib.s, right bank. Dry trib., left bank.
500.00	53194	Trail.
503.00	53466	Dry trib., left bank. (2).
507.00	53828	A few tires on bank. Lots of bunch grass in creek. Broken drip line hose in creek.
509.00	53943	AFTER UNIT #509- END OF ACCESS, END OF SURVEY.

END SURVEY The Franz Creek habitat survey ended because of lack of landowner access.

Franz Creek

Drainage: Russian River

Survey Dates: 09/10/97 to 11/09/97 Table 1 = SUMMARY OF RIFFLE, FLATWATER, AND POOL HABITAT TYPES

LATITUDE: 0°0'0" LONGITUDE: 0°0'0" LEGAL DESCRIPTION: Genfluence Location: QUAD:

.

MEAN SHELTER RATING	4 12 22 0	
MEAN RESIDUAL POOL VOL (cu.ft.)	0 1506 0	
STIMATED TOTAL VOLUME (cu.ft.)	7901 137731 404283 0	TAL VOL. 549915
MEAN E VOLUME (cu.ft.)	152 678 1789 0	7 0
ESTIMATED TOTAL AREA (sq.ft.)	16064 212939 238633 0	0TAL AREA (sq. ft.) 467637
MEAN AREA (sq.ft.)	309 1049 1056 0	P-
MEAN DEPTH (ft.)	0.3 0.5 1.5 0.0	
MEAN WIDTH (ft.)	7.3 10.3 14.0 0.0	-
PERCENT TOTAL LENGTH	5 46 28 21	
TOTAL F LENGTH (ft.)	2849 25289 15529 11684	LENGTH (fc.) 55350
MEAN LENGTH (ft.)	55 125 69 229	TOTAL
HABITAT PERCENT OCCURRENCE	10 38 42 10	
НАВІТАТ ТҮРЕ	R J FFLE FLATWATER POOL DRY	
LIN115 FULLY MEASURED	19 35 71 0	TOTAL UNITS 125
HABITAT UNITS	Franz Cr Assess	ਵਿਸ਼ੇ ਸ਼੍ਰੋ eek ≣ ables Graphs Map ment Completed 1997 Page 4 of 23

Survey Dates: 09/10/97 to 11/09/97 Drainage: Russian River Table 2 - SUMMARY OF HABITAT TYPES AND MEASURED PARAMETERS Franz Creek

ITAL TOTAL TAL TOTAL 5TH LEMGTH 5554 4 655 2 13 13 13 13 13 13 13 13 13 13 13 13 13	IPTION: TAL TOTAL MEAN TAL TOTAL MEAN STH LENGTH MIDTH I TAL TOTAL MEAN STA STA STA STA STA STA STA STA	IPTION: LATTIDE: FAL TOTAL MEAN FAL TOTAL MEAN FL 701 MEAN FL 7 10 FL 7 10 FL 11 0.6 FL 11 1.5 FL 11 1	TAL TOTAL MEAN MEAN MEAN MEAN FIL TOTAL MEAN MEAN MAXIMUM MEA FL TAL TOTAL MEAN MAXIMUM MEA FL TA Ft. Ft. Ft. Ft. Sq. ft FL TA Ft. Ft. Ft. Ft. Sq. ft FF1 TA T Ft. Ft. Ft. Sq. ft FF2 0 10 0.5 Z.1 11 Z74 0 11 0.6 Z.1 11 Z74 0 11 0.5 Z.1 11 Z74 0 11 0.6 Z.1 11 Z74 0 17 1.5 2.3 77 Z75 1 1 1.5 2.3 77 Z65 1 1.5 2.3 20 Z75 1 1.5 2.3 20 Z65 1 1.5 2.5 77 Z65 1 1.5 2.5 77 Z65 1 1.5 2.5 77 Z66 2 1.5 2.5 77	LFILUN: LATITUDE: 0°0'0" LONGITUD! AL TOTAL MEAN MEAN MEAN TOTAL FL TAL TOTAL MEAN MEAN MAXIMUM MEAN TOTAL FL TA FL FL FL FL PT AREA AREA FL TA FL FL FL FL FL Sq. FL FL TA T FL FL FL Sq. FL ST FS 0 10 0.5 Z.1 118 S92 FS 11 0.6 Z.1 651 Z605 FG 0 11 0.6 Z.1 651 Z605 FG 111 0.5 Z.1 651 Z605 FG 111 0.6 Z.1 651 Z605 FG 111 0.6 Z.1 651 Z605 FG 111 0.5 Z.1 774 Z715 FG 11 2.0 4.0 937 Z810 FG 11 2.0 4.0 937 Z810 FG 11 2.0 2.1 2.0 2.187 FG <th>Initial contraction Latitude: 0"010" Lonal Mean Total Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Fit Fit Fit Fit Set Mean Fit Fit Fit Fit Set Set Set Fit 0 11 0.6 Z.1 118 S92 41 Fit 0 11 0.6 Z.1 51 200 418 Fit 11 0.6 Z.1 605 418 Fit 11 0.5 Z.1 605 418 Fit 11 0.5 1.4 774 2702 1383 Fit 11 0.5 1.4 774 2702 1383 Fit 11 0.5 1.4 774 2702 1383 Fit 1 1.6 5.3 773 2810 1030 Fit 1 1.6 5.4 1376<</th> <th>Inition: Inition: Inition: Inition: Inition: Inition: Inition: STH TOTAL MEAN MAXIMUM MEAN TOTAL MEAN MAXIMUM MEAN TOTAL TOTAL<th>IPTION: LATITODE: OPOUT LONGITUDE: OPOUT MEAN TOTAL MEAN MAXIMUM MEAN TOTAL MEAN<</th><th>Inition: Latitude: O'O'U'' Longitude: O'O'U'' Longitude: O'O'U'' Longitude: MEAN MEAN</th></th>	Initial contraction Latitude: 0"010" Lonal Mean Total Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Total Mean Maximum Mean Total Mean Fit Fit Fit Fit Fit Set Mean Fit Fit Fit Fit Set Set Set Fit 0 11 0.6 Z.1 118 S92 41 Fit 0 11 0.6 Z.1 51 200 418 Fit 11 0.6 Z.1 605 418 Fit 11 0.5 Z.1 605 418 Fit 11 0.5 1.4 774 2702 1383 Fit 11 0.5 1.4 774 2702 1383 Fit 11 0.5 1.4 774 2702 1383 Fit 1 1.6 5.3 773 2810 1030 Fit 1 1.6 5.4 1376<	Inition: Inition: Inition: Inition: Inition: Inition: Inition: STH TOTAL MEAN MAXIMUM MEAN TOTAL MEAN MAXIMUM MEAN TOTAL TOTAL <th>IPTION: LATITODE: OPOUT LONGITUDE: OPOUT MEAN TOTAL MEAN MAXIMUM MEAN TOTAL MEAN<</th> <th>Inition: Latitude: O'O'U'' Longitude: O'O'U'' Longitude: O'O'U'' Longitude: MEAN MEAN</th>	IPTION: LATITODE: OPOUT LONGITUDE: OPOUT MEAN TOTAL MEAN MAXIMUM MEAN TOTAL MEAN<	Inition: Latitude: O'O'U'' Longitude: O'O'U'' Longitude: O'O'U'' Longitude: MEAN MEAN	
	MEAN VIDTH 1 t. t. t. t. t. t. t. t. t. t. t. t. t.	MEAN MEAN MAXII MEAN MEAN MAXII ft. ft. 7 7 0.5 11 0.6 11 0.5 12 1.5 15 1.5 21 1.5 21 1.5 21 1.5 21 1.5 0 0.0 0 0.0 0 0.0 0 0.0	LATITUDE: 0°0'0" MEAN MEAN MEAN MEAN MEAN MEAN MAXIMUM MEA MEAN MEAN MAXIMUM MEA ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. 11 0.5 2.1 65 11 0.5 1.4 174 17 1.5 2.3 79 8 1.1 2.6 7.7 17 1.2 2.3 79 17 1.2 2.3 79 17 1.5 2.3 70 17 1.5 2.3 70 13 1.5 2.3 77 15 1.5 5.4 137 15 1.5 5.6 77 15 1.5 5.7 57 15 1.5 5.7 57 15 1.5 5.6 77 15 1.5 5.7 57 15 1.5 5.7 57 15 1.5 5.9 16	LATITUDE: O"UIU" LONGITUDI MEAN MEAN MEAN MEAN TOTAL MEAN MEAN MAXIMUM MEAN TOTAL MEAN MEAN MAXIMUM MEAN TOTAL MIDTH DEPTH DEPTH AREA AREA MEAN MEAN MAXIMUM MEAN TOTAL MEAN MEAN MAXIMUM MEAN TOTAL MIDTH DEPTH DEPTH AREA AREA AREA AREA AREA AREA EST. 6 0.3 0.9 301 12938 11 0.6 2.1 118 592 17 0.5 1.4 1746 22702 17 0.5 1.4 1746 22702 17 0.5 1.8 892 53501 17 1.2 2.3 793 21537 17 1.2 2.3 793 21537 17 1.2 2.3 793 21537 17 1.2 2.3 208 208 17 1.4 1.4 5.4 1372 17 1.5 2.9 5.5 525 <	Lalitude: O"010" LONGITUDE: O"010" MEAN MEAN MAXIMUM MEAN TOTAL MEAN MIDTH DEPTH DEPTH AREA YOTAL MEAN MIDTH DEPTH DEPTH AREA YOTAL MEAN MIDTH DEPTH DEPTH AREA YOTAL MEAN MIDTH DEPTH DEPTH AREA YOLUME EST. ft ft ft Sq.ft cu.ft 6 0.3 0.9 301 12938 130 11 0.6 2.1 118 592 418 17 0.7 1.4 1746 22702 1383 17 0.5 1.8 892 53501 475 17 0.5 1.8 892 53501 475 17 1.2 2.3 793 2380 1030 17 1.2 2.3 793 23810 1030 17 1.2 2.3 793 23810 1030 17 1.2 2.3 238 1030 17 1.2 2.3 208 206 417 17 1.4	Introde: Under	Initialize: Offection Longitude:: Offection MEAN MEAN MAXIMUM MEAN TOTAL MEAN TOTAL MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN TOTAL MEAN MIDTH DEPTH DEPTH AREA AREA AREA VOLUME RESTLOAL Ft. ft. ft. ft. sq.ft. sq.ft. cu.ft. cu.ft. cu.ft. 6 0.3 0.9 301 12938 130 5584 0 11 0.6 2.1 118 592 41 205 0 11 0.6 2.1 153 1383 17984 0 11 0.5 1.4 1746 22702 1383 17795 0 11 0.5 1.4 86120 2066 154436 1725 11 1.2 2.3 793 2848 1725 1725 11 2.6 2.18	LALITUDE: 0"0"U" LOUGE TOTAL MEAN TOTAL MEAN MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN TOTAL MEAN MEAN MEAN MAXIMUM MEAN TOTAL MEAN TOTAL MEAN MEAN MIDTU C G.J Squitt Curit. Curit. MEAN MEAN MEAN MAXIMUM MEAN MEAN MEAN MEAN MEAN MEAN MAXIMUM MEAN AREA AREA AREA MEAN MEAN IO O.S Z.1 118 Squitt Curit. Curit. MEAN IO O.S Z.1 State SSGUIT ATS ZOO OO OO <th <="" td="" to<=""></th>	

Draii	Surve
	TYPES
	POOL
	QF
×	SUMMARY
Lee	
C	P 40,
Franz	table

Drai∩age: Russian River

Survey Dates: 09/10/97 to 11/09/97

nen							LATI	LUDE: 0°	0.0" LON	IGI TUDE: 0	.0.0			
	UNITS FULLY MEASURED	HABITAT TYPE	HABITAT PERCENT OCCURRENCE	MEAN LENGTH (ft.)	TOTAL LENGTH (ft.)	PERCENT TOTAL LENGTH	MEAN WIDTH (ft.)	MEAN DEPTH (ft.)	MEAN AREA (sq.ft.)	TOTAL AREA EST. (sq.ft.)	MEAN VOLUME (cu.ft.)	TOTAL VOLUME EST. (cu.ft.)	MEAN RESIDUAL POOL VOL. (cu.ft.)	MEAN SHELTER RATING
	23 47	MAIN SCOUR BACKWATE	37 62 R 0	69 69 25	5801 9703 25	37 62 0	14.1 13.9 21.0	1.5 1.5 1.5	1080 1046 525	90687 147420 525	1902 1728 788	159780 243715 788	1632 1425 0	21 23
P 02 L	TOTAL UNITS 71 71			тотац	(ft.) (ft.) 15529				F	0TAL AREA (sq.ft.) 2386 33		0TAL VOL. (cu.ft.) 404283		

FFANZ CFeek

Drainage: Russian River

Survey Dates: 09/10/97 to 11/09/97 Table 4 - SUMMARY OF MAXIMUM POOL DEPTHS BY POOL HABITAT TYPES

LATITUDE: 0°0'0" LONGITUDE: 0°0'0" LEGAL DESCRIPTION: Confluence Location: QUAD:

MCP DEPTH OCCURRENCE DEPTH OCCURRENCE DEPTH OCCURRENCE 77 MCP 34 0 27 30 7 MCP 34 0 21 27 30 7 MCP 1 0 0 1 27 30 7 MCP 1 0 0 1 23 50 30 7 MCP 1 0 0 0 2 67 30 7 MCP 1 0 0 0 2 50 50 7 MCP 1 0 0 0 0 0 0 7 MCP 1 1 0 <th>DEPTH OCCURRENCE DEPTH 14 18 12 0 0 0 0 0 0 12 67 1 12 21 9 12 21 9 12 27 4</th> <th>TH OCCURRENCE</th>	DEPTH OCCURRENCE DEPTH 14 18 12 0 0 0 0 0 0 12 67 1 12 21 9 12 21 9 12 27 4	TH OCCURRENCE
	14 18 18 18 18 18 18 18 18 18 18 18 18 18	12 16 0 0 0 1 33 33
	0 0 2 12 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0	0 1 33 0 0
4 1 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 1 1 0 0 1 1 2 2 2 1 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 33
	2 67 1 0 0 0 12 21 9 12 27 4	1 33
	0 0 0 12 21 9 12 27 4	
	12 21 9 12 27 4 5 17 4	0
	12 27 4 5 17 2	9 16
X 44 LSBK 19 0 0 7 16 21 48	E 17 2	4 9
A 30 LSB& 13 0 0 6 20 16 53		3 10
0 4 PLP 2 0 0 1 25 2 50	1 25 0	0
S 1 DPL 0 0 0 0 1 100	0 0	0

s Map 997

alite 5 - Summery of Shelter by Habi ter Type survey bates: 07/1077 to 11/09/77 ontiluence Location: quark LEGAL DESCRIPTION: LATITUDE: 0°0'0" LONGTILDE: 0°0'0" ILEGAL DESCRIPTION: LEGAL DESCRIPTION: LEGAL DESCRIPTION: LATITUDE: 0°0'0" LONGTILDE: 0°0'0" MERILITE TYPE UNDERCUT Sup LEGAL ECAL X TOTAL X	ranz C	reek								Drain	age: Russian	River		
	Table 5	S.	ummary o	if Shelter	· by Habita	t Type				Surve	y Dates: 09/1	0/97 to 11	16/60/1	
	Conflue	ance	Location	: QUAD:		LEGAL	DESCR	IPTION:		LATIT	UDE: 0°0'0"	LONGITUDE	#0.0°0 :	
14 14 16 0 3 1 168 0 3 0 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 0 6 0 0 6 0 0 6 0 <th>MEASU</th> <th>ITS RED</th> <th>UNITS SHELTER EASURED</th> <th>HABITAT TYPE</th> <th>% TOTAL UNDERCUT BANKS</th> <th>% TOT S</th> <th>AL %</th> <th>LMD</th> <th>% TOTAL ROOT MASS</th> <th>% TOTAL TERR.</th> <th>% TOTAL AQUATIC VEGETATION</th> <th>X TOTAL WHITE WATER</th> <th>% TOTAL BOULDERS</th> <th>% TOTAL BEDROCK LEDGES</th>	MEASU	ITS RED	UNITS SHELTER EASURED	HABITAT TYPE	% TOTAL UNDERCUT BANKS	% TOT S	AL %	LMD	% TOTAL ROOT MASS	% TOTAL TERR.	% TOTAL AQUATIC VEGETATION	X TOTAL WHITE WATER	% TOTAL BOULDERS	% TOTAL BEDROCK LEDGES
1 1		43	14	LGR	0		m	0	0	59	0	0	38	0
130 17 RUN 3 53 0 00 0<		5	м	CAS	M		0	0	0	9	0	0	91	0
13 6 (1) 22 6 0 28 32 12 0 0 130 17 RUN 3 5 10 23 5 1 1 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 0 0 37 10 12 10 11 1 0 10 10 10 10 10 10 10 10 10 11 1 15 10 <t< td=""><td>F</td><td>4</td><td>2</td><td>BRS</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>100</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	F	4	2	BRS	0		0	0	0	100	0	0	0	0
17 RUM 3 53 0 5 1 1 0 37 10 13 SRM 3 3 CCP 0 10 7 2 21 1 0 37 10 13 SRM 9 10 7 7 6 12 0 0 10 23 5 11 1 0 37 10 13 SRM 9 10 10 23 5 13 16 12 0 0 10 10 23 5 11 1 <td< td=""><td>ra</td><td>13</td><td>9</td><td>GLD</td><td>22</td><td></td><td>9</td><td>0</td><td>28</td><td>32</td><td>12</td><td>0</td><td>0</td><td>0</td></td<>	ra	13	9	GLD	22		9	0	28	32	12	0	0	0
77 76 NM 9 10 73 58M 9 10 73 58M 9 10 73 5 16 12 0 10 51 7 7 7 7 7 7 7 7 7 7 7 6 12 0 0 10 23 5 18 16 12 0 10 <td< td=""><td>nz</td><td>130</td><td>17</td><td>RUN</td><td>M</td><td></td><td>53</td><td>0</td><td>5</td><td>-</td><td>-</td><td>0</td><td>37</td><td>0</td></td<>	nz	130	17	RUN	M		53	0	5	-	-	0	37	0
77 76 M0P 10 23 5 18 16 12 0 10 23 5 18 16 12 0 10 23 5 18 16 12 0 10 23 5 18 16 13 2 4 7 10 23 7 0 0 10 23 7 0 20 20 0 20 <	C	60	13	SRN	6		10	2	2	21	0	0	51	0
A ZCP 0 10 0 63 7 0 20 20 20 X X X X X X X X X 0 0 20	re	12	26	MCP	10		23	Ś	18	16	12	0	10	5
4 4 57 4 13 2 4 0 20 48 3 5 67P 3 17 10 23 5 0 0 42 1 1 1 1 1 1 23 5 0 0 42 4 1 1 1 1 1 1 1 1 4	ek	m	ñ	CCP	0		10	0	63	7	0	0	20	0
3 3 CRP 3 17 10 23 5 0 0 42 1 1 151 0 35 40 25 5 0 0 0 42 1 1 151 0 35 40 25 0 <td>τ</td> <td>4</td> <td>4</td> <td>STP</td> <td>-</td> <td></td> <td>2</td> <td>4</td> <td>13</td> <td>2</td> <td>4</td> <td>0</td> <td>20</td> <td>48</td>	τ	4	4	STP	-		2	4	13	2	4	0	20	48
1 1 1 1 1 1 1 1 1 1 0 35 40 25 0 0 0 0 0 0 0 0 0 5 1	ab	M	M	CRP	2		17	10	23	Ś	0	0	42	0
S8 58 LSR 7 18 7 48 15 0 0 5 12 12 10 12 12 10 12 10 12 10 12 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 3 2.3 13 16 12 0 10 12 10 12 10 10 10 10 10 10 3 2.3 13 12 10	ole	-	-	۲SL	0		35	40	25	0	0	0	0	0
45 43 LSBk 10 19 3 18 10 19 3 18 16 12 0 10 13 30 28 LSBo 5 4 0 10 3 </td <td>s (</td> <td>58</td> <td>58</td> <td>LSR</td> <td>7</td> <td></td> <td>18</td> <td>7</td> <td>48</td> <td>15</td> <td>0</td> <td>0</td> <td>S</td> <td>-</td>	s (58	58	LSR	7		18	7	48	15	0	0	S	-
30 28 LSBo 5 4 0 33 23 0 56 0 56 0 56 0 56 0 56 0 16 46 8 8 16 46 8 0	Gr	45	43	LSBK	10		19	m	18	16	12	0	10	12
4 4 PLP 0 2 4 22 2 4 8 8 8 8 8 8 8 8 8 1 1 10 <t< td=""><td>ар</td><td>30</td><td>28</td><td>LSBo</td><td>2</td><td></td><td>4</td><td>0</td><td>10</td><td>M</td><td>23</td><td>0</td><td>56</td><td>0</td></t<>	ар	30	28	LSBo	2		4	0	10	M	23	0	56	0
1 1 DPL 40 0 60 0 <td>hs</td> <td>4</td> <td>4</td> <td>PLP</td> <td>0</td> <td></td> <td>2</td> <td>4</td> <td>22</td> <td>2</td> <td>0</td> <td>16</td> <td>46</td> <td>80</td>	hs	4	4	PLP	0		2	4	22	2	0	16	46	80
Odd 51 0 DRY 0 15 4 0 </td <td>N</td> <td>-</td> <td>-</td> <td>DPL</td> <td>40</td> <td></td> <td>0</td> <td>0</td> <td>09</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	N	-	-	DPL	40		0	0	09	0	0	0	0	0
ALL 532 276 8 18 4 26 14 8 0 17 4 HABITAT TYPES POOLS 226 221 8 18 5 28 14 9 0 15 4	lap	51	0	DRY	0		0	0	0	D	0	0	0	0
POOLS 226 221 8 18 5 28 14 9 0 15 4	ALL 5 HABITAT TYPES	532	276		ω		8	4	26	14	ω	0	17	4
	POOLS 2	226	221		ø	-	18	'n	28	14	6	0	15	4

Drainage: Russian River	Survey Dates: 09/10/97 to 11/09/97
	SUBSTRATES BY MABITAT TYPE
Franz Creek	Table 6 - SUMMARY OF DOMINANT :

10 · U · U
I ONGT TUDE -
100000
1 ATTTUDE.
FGAL DESCRIPTION.
ocation: dian:

	% TOTAL	DOMINANT	2	100	100	0	2	25	11	0	33	0	0	2	18	10	0	0	0
	% TOTAL	DOMINANT	0	0	0	0	0	19	0	0	33	0	0	0	0	10	0	0	0
TUDE: 0°0'0"	% TOTAL	DOMINANT	21	0	0	0	20	31	6	0	0	0	0	0	0	0	0	0	13
E: 0"0'0" LONGI	% TOTAL	DOMINANT	29	0	0	0	20	19	9	0	0	0	0	11	0	10	33	0	13
LATITUD	X TOTAL	DOMINANT	43	0	0	33	20	6	11	33	0	0	0	11	18	0	67	0	50
DESCRIPTION:	X TOTAL	DOMINANT	0	0	0	67	33	0	61	33	33	100	100	68	2	60	0	100	13
LEGAL	% TOTAL	DOMINANT	0	0	0	0	0	0	9	33	0	0	0	ß	0	10	0	0	13
: dvnb	HABITAT	1	LGR	CAS	BRS	GLD	RUN	SRN	MCP	GCP	STP	CRP	TSL	LSR	LSBk	LSBG	þľþ	DPL	DRY
Location:	STINU	MEASURED	14	3	2	9	15	16	18	3	3	ы	-	19	11	10	3	-	80
cont tuence	TOTAL	INITS	43	-	rai As	nz	es	rê sm	ek nei Pa	শ না Ige	ab Co 9 9	les om	s C ipli f 2	ete 3	a p l ed	1 5 19	₩ 99	ap 7	51

Franz Creek

Mean	Mean	Mean	Mean	Mear
Percent	Percent	Percent	Right bank	Left Bank
Canopy	Evergreen	Deciduous	% Cover	% Cover
70.84	36.99	62.67	53.77	58.41

APPENDIX A. Summary of Mean Percent Vegetative Cover for Entire Stream

APPENDIX B.

Mean Percentage of Dominant Substrate

Dominant	Number	Number	Percent
Class of	Units	Units	Total
Substrate	Right Bank	Left Bank	Units
Bedrock	13	27	14.18
Boulder	5	7	4.26
Cobble/Gravel	20	13	11.70
Silt/clay	103	94	69.86

Mean Percentage of Dominant Vegetation

Dominant Class of Vegetation	Number Units Right Bank	Number Units Left Bank	Percent Total Units
Grass	17	10	9.57
Brush	11	14	8.87
Deciduous Trees	75	83	56.03
Evergreen Trees	35	33	24.11
No Vegetation	3	1	1.42

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 10 of 23

APPENDIX C. FISH HABITAT INVENTORY DATA SUMMARY

STREAM NAME: Franz Creek SAMPLE DATES: 09/10/97 to 11/09/97 SURVEY LENGTH: MAIN CHANNEL: 53904 ft. LOCATION OF STREAM MOUTH: USGS Ouad Map: Legal Description:

SIDE CHANNEL: 1523 ft.

Latitude: 0°0'0" Longitude: 0°0'0"

SUMMARY OF FISH HABITAT ELEMENTS BY STREAM REACH

STREAM REACH 1 (Units 1-113) Channel Type: F4 Main Channel Length: 16155 ft. Evergreen Component: 30% Side Channel Length: 0 ft Deciduous Component: 69% Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 8.1 ft. Pools by Stream Length: 16% Pool Mean Depth: 1.4 ft. Base Flow: 0.0 cfs Base Flow: 0.0 clsPools >=3 ft. beep: 40%Water: 62-71°F Air: 65-77°FMean Pool Shelter Rtn: 24Dom. Bank Veg.: Deciduous TreesDom. Shelter: Root massesBank Vegetative Cover: 49%Occurrence of LOD: 13% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 10545 ft. Embeddness Value: 1. 5% 2. 26% 3. 39% 4. 29%

STREAM REACH 2 (Units 114-137) Channel Type: F2 Main Channel Length: 1954 ft.Evergreen Component: 31%Side Channel Length: 31 ft.Deciduous Component: 69% Riffle/Flatwater Mean Width: 7.6 ft. Pools by Stream Length: 41% Pool Mean Depth: 2.0 ft. Base Flow: 0.0 cfs Base Flow: 0.0 cfsPools >=3 ft. Deep: 50%Water: 64-65°F Air: 72-73°FMean Pool Shelter Rtn: 34Dom. Bank Veg.: Deciduous TreesDom. Shelter: BouldersBank Vegetative Cover: 38%Occurrence of LOD: 0%Dom. Bank Substrate: Silt/Clay/SandDry Channel: 140 ft.Embeddness Value: 1. 0%2. 20%3. 70%4. 10%

STREAM REACH 3 (Units 138-184) Channel Type: F3 Main Channel Length: 5136 ft. Evergreen Component: 34% Side Channel Length: 0 ft. Deciduous Component: 65% Riffle/Flatwater Mean Width: 15.3 ft. Pools by Stream Length: 34% Pool Mean Depth: 1.8 ft.Pools >=2 ft. Deep: 100%Base Flow: 0.0 cfsPools >=3 ft. Deep: 55%Water: 57-65°F Air: 58-78°FMean Pool Shelter Rtn: 14Dom. Bank Veg.: Deciduous TreesDom. Shelter: BouldersBank Vegetative Cover: 51%Occurrence of LOD: 20% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 413 ft. Embeddness Value: 1. 0% 2. 30% 3. 40% 4. 30%

Mean Canopy Density: 53% Deciduous Component: 69% Pools >=2 ft. Deep: 74% Pools >=3 ft. Deep: 26%

Mean Canopy Density: 53% Pools >=2 ft. Deep: 100% Pools >=3 ft. Deep: 50%

Mean Canopy Density: 56% Deciduous Component: 65%

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 11 of 23

STREAM REACH 4 (Units 185-209) Channel Type: D3 Main Channel Length: 3900 ft. Side Channel Length: 833 ft. Riffle/Flatwater Mean Width: 0.0 ft. Pools by Stream Length: 39% Pool Mean Depth: 1.9 ft. Base Flow: 0.0 cfs Water: 56-59°F Air: 59-78°F Dom. Bank Veg.: Deciduous Trees Bank Vegetative Cover: 51% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 309 ft. Embeddness Value: 1. 0% 2. 27% 3. 53% 4. 20%

STREAM REACH 5 (Units 210-324) Channel Type: F3 Main Channel Length: 12655 ft. Side Channel Length: 592 ft. Riffle/Flatwater Mean Width: 13.4 ft. Pools by Stream Length: 33% Pool Mean Depth: 1.5 ft. Base Flow: 0.0 cfs Water: 49-62°F Air: 44-79°F Dom. Bank Veg .: Deciduous Trees Bank Vegetative Cover: 77% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 0 ft. Embeddness Value: 1, 0% 2, 47% 3. 33%

STREAM REACH 6 (Units 325-397) Channel Type: B3 Main Channel Length: 5605 ft. Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 9.3 ft. Pools by Stream Length: 34% Pool Mean Depth: 1.5 ft. Base Flow: 0.0 cfs Water: 48-59°F Air: 49-73°F Dom. Bank Veg.: Deciduous Trees Bank Vegetative Cover: 39% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 0 ft. Embeddness Value: 1. 3% 2. 35% 3. 30% 4. 32%

Mean Canopy Density: 85% Evergreen Component: 18% Deciduous Component: 82% Pools >=2 ft. Deep: 90% Pools >=3 ft. Deep: 80% Mean Pool Shelter Rtn: 20 Dom. Shelter: Root masses Occurrence of LOD: 8%

Mean Canopy Density: 72% Evergreen Component: 23% Deciduous Component: 77% Pools >=2 ft. Deep: 84% Pools >=3 ft. Deep: 42% Mean Pool Shelter Rtn: 22 Dom. Shelter: Boulders Occurrence of LOD: 12% 4. 20%

Mean Canopy Density: 75% Evergreen Component: 27% Deciduous Component: 73% Pools >=2 ft. Deep: 70% Pools >=3 ft. Deep: 35% Mean Pool Shelter Rtn: 27 Dom. Shelter: Root masses Occurrence of LOD: 24%

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 12 of 23

STREAM REACH 7 (Units 398-407) Channel Type: G2 Main Channel Length: 786 ft. Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 5.0 ft. Pools by Stream Length: 53% Pool Mean Depth: 1.2 ft. Base Flow: 0.0 cfs Water: 52-52°F Air: 60-60°F Dom. Bank Veg.: Deciduous Trees Bank Vegetative Cover: 39% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 0 ft. Embeddness Value: 1. 33% 2. 0% 3. 0% 4. 67%

STREAM REACH 8 (Units 408-425) Channel Type: B3 Main Channel Length: 2378 ft. Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 6.6 ft. Pools by Stream Length: 17% Pool Mean Depth: 1.4 ft. Base Flow: 0.0 cfs Water: 52-52°F Air: 60-60°F Dom. Bank Veg.: Deciduous Trees Dom. Shelter: Boulders Bank Vegetative Cover: 55% Dom. Shelter: Boulders Occurrence of LOD; 35% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 0 ft. Embeddness Value: 1. 0% 2. 75% 3. 13% 4. 13%

STREAM REACH 9 (Units 426-509) Channel Type: G1 Main Channel Length: 5336 ft. Side Channel Length: 68 ft. Riffle/Flatwater Mean Width: 5.0 ft. Pools by Stream Length: 34% Pool Mean Depth: 1.4 ft. Base Flow: 0.0 cfs Water: 45-54°F Air: 50-63°F Mean Pool Shelter Rtn: 19 Dom. Bank Vegetative Cover: 71% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 66 ft. Embeddness Value: 1. 25% 2. 23% 3. 5% 4. 48%

Mean Canopy Density: 88% Evergreen Component: 66% Deciduous Component: 34% Pools >=2 ft. Deep: 67% Pools >=3 ft. Deep: 17% Mean Pool Shelter Rtn: 19 Dom. Shelter: Boulders Occurrence of LOD: 5%

Mean Canopy Density: 89% Evergreen Component: 53% Deciduous Component: 47% Pools >=2 ft. Deep: 56% Pools >=3 ft. Deep: 11% Mean Pool Shelter Rtn: 23

Mean Canopy Density: 85% Evergreen Component: 71% Deciduous Component: 29% Pools >=2 ft. Deep: 70% Pools >=3 ft. Deep: 8%

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 13 of 23

Franz Creek

Level II Habitat Types

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 14 of 23

Graph 1

Franz Creek

Percent Bank Composition

Franz Creek Tables Graphs Map Assessment Completed 1997 Page 23 of 23