# OIL DISPERSANTS: "TO USE OR NOT USE"

Ronald S. Tjeerdema Department of Environmental Toxicology, UC Davis

## **Discussion Topics**

- Dispersants in the Responder's Toolbox
- Environmental Fate of Surfactants
- Bioassays WAF versus CEWAF
- Metabolic actions WAF versus CEWAF
- Summary and Conclusions



# I. Dispersants in the Responder's Toolbox





# **Dispersants – One of Several Tools**



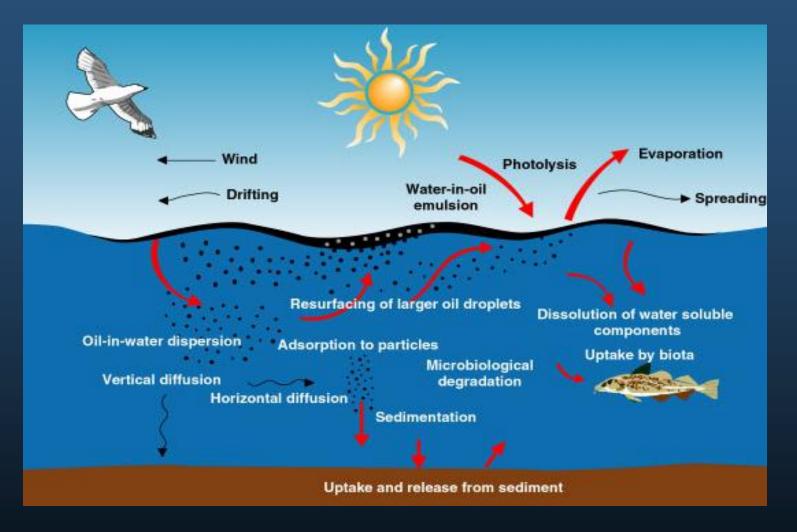
- Collection
- Burning
- Sinking
- Bioremediation





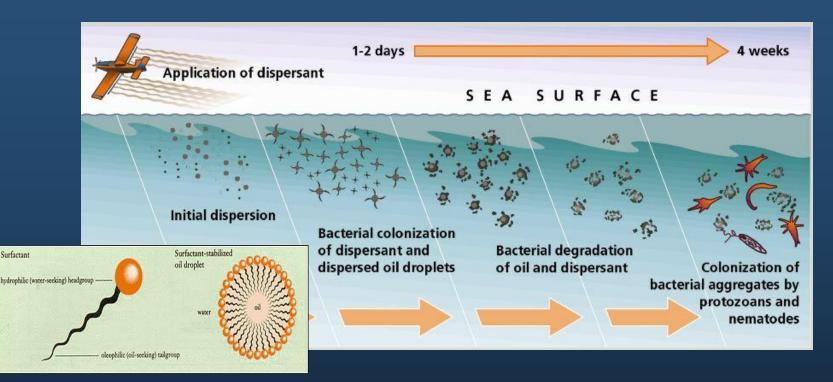
#### **Resources and Impacts**

- Dispersants might prevent slicks from forming
- Dispersed oil might remain offshore, continually break into smaller droplets and degrade





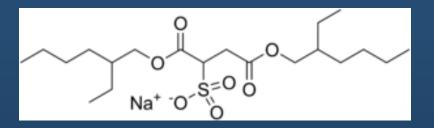

#### "An Audacious Decision in Crisis Gets Cautious Praise" Science, August 18, 2010



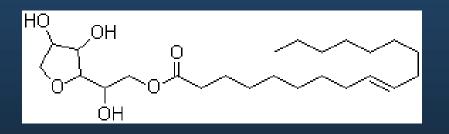

#### **II. Environmental Fate of Surfactants**

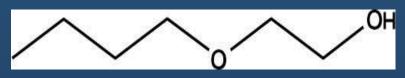




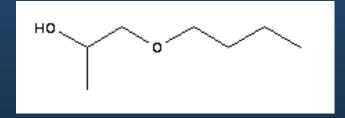

## **Dispersants Enhance Weathering**




- Dispersants are similar to domestic detergents
- They break up oil and remove it from the surface
- The droplets formed are more readily digested by bacteria

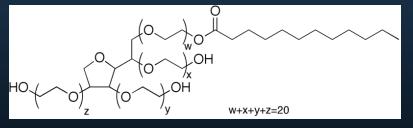



## What Makes a Dispersant? Corexit 9527




#### **Dioctyl Sodium Sulfosuccinate**

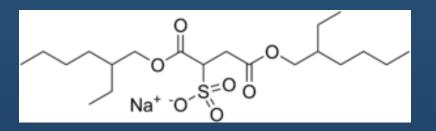




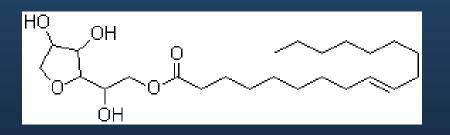

#### 2-Butoxyethanol



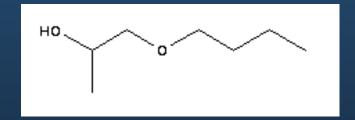
#### Propylene Glycol Butyl Ether


#### Sorbitan Monooleate



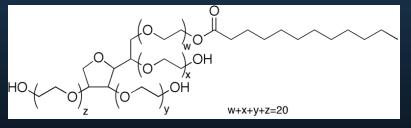

Ethoxylated Sorbitan Monooleate




## What Makes a Dispersant? Corexit 9500



#### **Dioctyl Sodium Sulfosuccinate**




#### Petroleum Distillates?



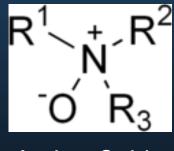
#### Propylene Glycol Butyl Ether

#### Sorbitan Monooleate



Ethoxylated Sorbitan Monooleate



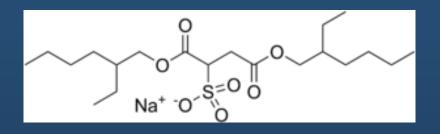

## **Comparison – Dawn Dishwashing Detergent**

$$\operatorname{CH}_{3}(\operatorname{CH}_{2})_{y} - \operatorname{O} - \begin{array}{c} \operatorname{O} \\ \parallel \\ \operatorname{S} - \operatorname{O} - \operatorname{Na} \\ \parallel \\ \operatorname{O} \end{array}$$

Sodium Alkyl Sulfonate



Sodium Lauryl Benzene Sulfonate

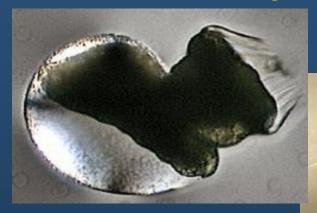



Amine Oxide

Also: Sodium Alkyl Ethoxylate Sulfonate Ethanol Perfumes and Colorants



# Fate of a Dispersant? DOSS




**Dioctyl Sodium Sulfosuccinate** 

- In water and soils, degrades by 90% within 12-17 days
- Reactions include hydrolysis, oxidation (microbial, abiotic)
- Vapors photodegrade via oxidation (t<sub>1/2</sub> < 18 h)</li>
- DWH present at depth in ppb range months after the event



# III. Bioassays – WAF Versus CEWAF











## **Early Life Stage Actions**

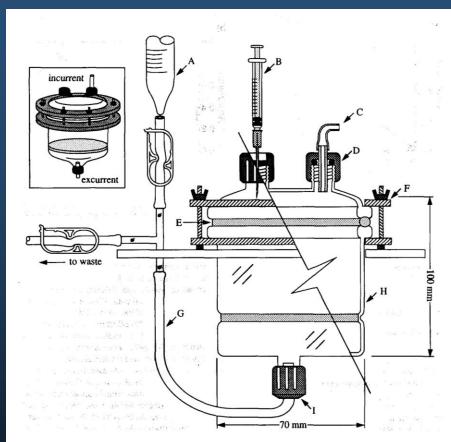
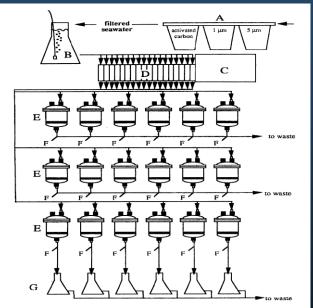
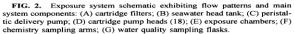





Fig. 1. Schematic diagram of toxicity test exposure chamber: A, pipette for chemistry sampling; B, syringe for food introduction through septum; C, seawater inlet; D, threaded glass fitting with phenolic cap; E, silicone O-ring-sealed glass flange; F, full-circumference aluminum flange clamp; G, silicone tubing; H, chamber body; I, chamber outlet.







# Corexit 9527 – Constant versus Spiked

5.51

3.62

4.78

6.14

5.53

NC

NC

NC

2.47-8.54

1.21-6.02

2.09 - 10.2

2.20-8.86

NC

NC

NC

-0.52 - 10.1

6.13-8.53

3.28-5.37

19.8-47.7

22.5-34.8

32.3-51.0

NC

NC

NC

| Species   | Test | NOEC<br>(ppm) | LC50<br>(ppm)     | 95% C.I.<br>LC50       | Slope        | 95% C.I.<br>slope      |
|-----------|------|---------------|-------------------|------------------------|--------------|------------------------|
| Haliotis  | 1    | 1.19          | 1.96 <sup>a</sup> | 1.89-2.02              | 7.38         | 6.35-8.40              |
| 114110115 | 2    | 1.50          | 2.20 <sup>a</sup> | 2.04-2.36              | 2.63         | 2.32-2.94              |
|           | 3    | 0.63          | 1.60ª<br>7.06     | 1.50-1.69<br>5.97-8.77 | 3.98<br>4.34 | 3.52-4.43<br>1.99-6.69 |

7.06

7.26

4.26

25.5

27.9

40.6

NC

NC

NC

LC50 and slope values derived from probit analysis

1

2

3

1

2

3

1

2

3

NC = not calculated; data inappropriate for calculation.

<sup>a</sup>Sublethal EC50 values.

Holmesimysis

Atherinops

Macrocystis

<sup>b</sup>Signifies that lowest test concentration was significantly different from control.

4.20

4.14

1.66

12.3

14.2

13.9

<2.35

1.32

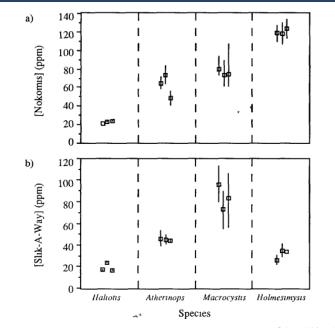
2.07

- Compared actions of dispersants • under constant versus spiked exposure conditions
- Spiked-exposure usually less toxic •

| Species      | Test | NOEC<br>(ppm) | MEC<br>(ppm) | 95% C.I.<br>MEC |
|--------------|------|---------------|--------------|-----------------|
| Haliotis     | 1    | 5.3           | 13.6         | 12.9-14.3       |
|              | 2    | 8.4           | 18.1         | 16.8-19.5       |
|              | 3    | 6.4           | 15.9         | 15.1-16.4       |
| Holmesimysis | 1    | 14.9          | 163.4        | 140.8-189.      |
| •            | 2    | 20.5          | 136.4        | 109.5-169.      |
|              | 3    | 8.4           | 120.4        | 89.3-162.       |
| Atherinops   | 1    | 31.0          | 59.2         | 41.4-84.6       |
| •            | 2    | 50.3          | 86.2         | 68.6-108.       |
|              | 3    | 89.8          | 103.5        | 85.5-125.2      |
| Macrocystis  | 1    | 16.4          | 89.1         | 80.9-93.3       |
| 2            | 2    | <13.6         | 86.6         | 72.4-96.5       |
|              | 3    | 12.2          | 102.0ª       | NC              |

Table 2 Decults of anilyad averaging to visity tests

Median-effect concentrations (MEC) are IC50 for Macrocystis, EC50 for Haliotis, and LC50 for Holmesimysis and Atherinops.


NC = not calculated.

<sup>a</sup>Extrapolated beyond actual data set by linear regression.



## **Spiked Exposure MEC Range**

 Dispersants alone under spiked conditions generally toxic in the range of 20-150 ppm



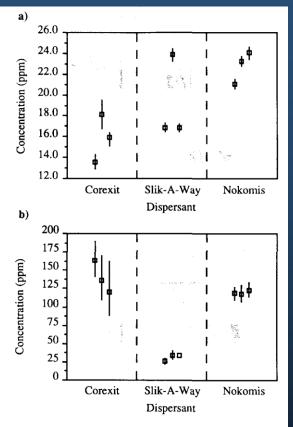
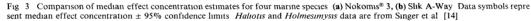
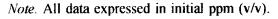
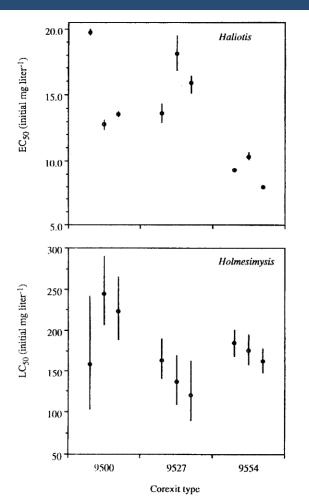




Fig. 6. Comparison of median-effect concentration estimates from triplicate toxicity tests using Corexit<sup>®</sup> 9527, Slik-A-Way, and Nokomis<sup>®</sup> 3 for (a) *Haliotis* and (b) *Holmesimysis*. Data points represent  $EC50/LC50 \pm 95\%$  confidence limits. Corexit data are from Singer et al. [8].







## Corexit 9500

#### Toxicity of Corexits 9527 and 9500 is similar for abalone, but not for mysids



| Test         |   | NOEC  | EC <sub>50</sub> (95% CL) |
|--------------|---|-------|---------------------------|
| Haliotis     | 1 | 7.6   | 19.7                      |
|              |   |       | (19.5, 20.0)              |
|              | 2 | 5.7   | 12.8                      |
|              |   |       | (12.4, 13.1)              |
|              | 3 | 9.7   | 13.6                      |
|              |   |       | (13.4, 13.7)              |
| Holmesimysis | 1 | 41.4  | 158.0                     |
| -            |   |       | (103.1, 242.0)            |
|              | 2 | 142.3 | 245.4                     |
|              |   |       | (207.5, 290.1)            |
|              | 3 | 124.4 | 223.7                     |
|              |   |       | (188.3, 265.7)            |





**FIG. 5.** Comparison of median-effect concentrations of triplicate *Haliotis* (top) and *Holmesimysis* (bottom) toxicity tests using Corexit 9500, 9527, and 9554. Data symbols represent  $\text{EC/LC}_{50}$  with 95% confidence intervals.



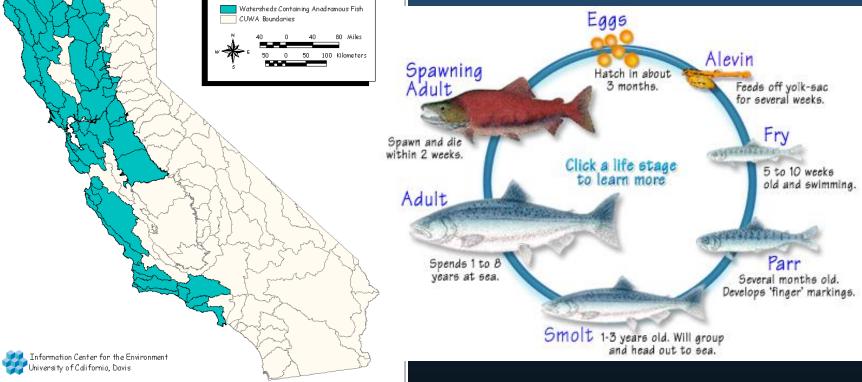
# Corexit 9527: PBCO WAF versus CEWAF

| Species/Endpoint               | EC/LC50 (mg/L THC <sub>(C7 C30)</sub> ) |                         |                         |                         |                         |                            |  |  |
|--------------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------|--|--|
|                                | WAF                                     |                         |                         | CEWAF                   |                         |                            |  |  |
|                                | Test 1                                  | Test 2                  | Test 3                  | Test 1                  | Test 2                  | Test 3                     |  |  |
| Haliotis<br>Larval abnormality | >34.03 <sup>b</sup>                     | >46.99                  | >33.58                  | 19.09<br>(18.90, 19.28) | 32.70<br>(32.11, 33.30) | 17.81<br>(17.65, 17.96)    |  |  |
| Holmesimysis<br>96-h mortality | >34.68                                  | >25.45                  | >28.55                  | 10.54<br>(9.08, 12.25)  | 10.75<br>(9.45, 12.22)  | 10.83<br>(NA) <sup>c</sup> |  |  |
| Initial narcosis               | 11.31<br>(9.14, 13.99)                  | 11.58<br>(10.51, 12.77) | 15.90<br>(14.71, 17.18) | 11.07<br>(10.16, 12.05) | >38.33                  | 48.03<br>(40.57, 56.85)    |  |  |
| Atherinops                     |                                         |                         |                         |                         |                         |                            |  |  |
| 96-h mortality                 | 16.34<br>(14.57, 18.55)                 | 40.20<br>(38.68, 41.45) | 35.73<br>(9.37, 46.85)  | 28.60<br>(17.49, 46.76) | 74.73<br>(62.30, 89.60) | 34.06<br>(30.24, 38.37)    |  |  |
| Initial narcosis               | 26.63<br>(24.82, 27.59)                 | >48.22                  | 31.76<br>(14.65, 46.59) | >101.82                 | >140.97                 | >62.22                     |  |  |

. . . . . . . .

\* Data are median-effect concentration and 95% confidence limits

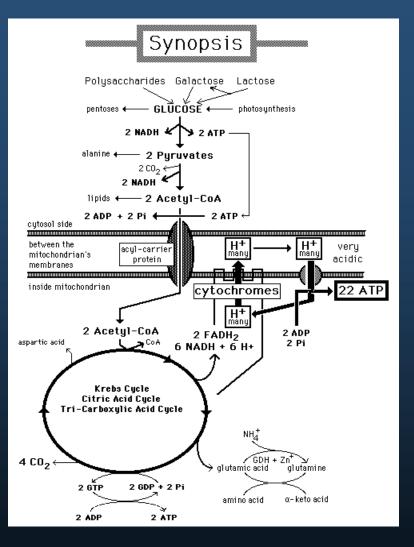
<sup>b</sup> EC/LC50 estimated to be above highest test concentration


<sup>e</sup> Confidence limits not reliably calculable

- In general, WAF is less toxic than CEWAF •
- However, trend is reversed for narcosis... •
- Which is more important? •
- What about the chemistry? •



## **IV. Metabolic Actions – WAF Versus CEWAF**


California Unified Watershed Assessment Presence of Threatened and Endangered Anadromous Salmonids





# **Objectives**

- Assess actions of WAF versus CEWAF of PBCO in fishes under spikedexposure conditions
- Apply <sup>1</sup>H-NMR-based metabolomic analysis to denonstrate sublethal actions





## **Methods – WAF Exposures**



- Methods of CROSERF (Singer et al. 2000)
- Polycarbonate 20-L carboys and 18-L aquaria
- WAFs spun at low rate with minimal vortex (~150 rpm, 24 h)
- Aquaria sampled for TPH and THC, 8 fish introduced, and clean water flushing initiated



## **Methods – CEWAF Exposures**



 Add oil, create vortex of 20 to 25%

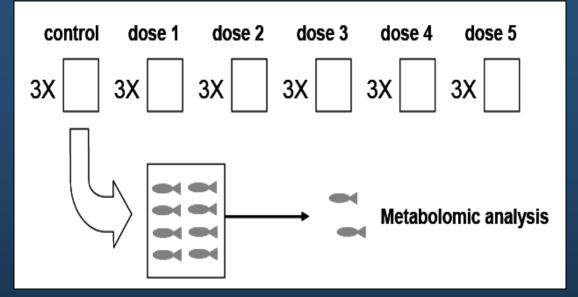


 Pipet 10% (by oil weight) Corexit 9500



 Spin for 18 h, settle for 6 h




## **Methods – Analytical Chemistry**

 Total petroleum hydrocarbons (TPH; C<sub>10</sub> – C<sub>36</sub>) – via GC-FID

- Volatile hydrocarbons (BTEX; C<sub>6</sub>-C<sub>9</sub>) benzene, toluene, ethyl benzene and xylenes analyzed via GC/MS with purge-and-trap extraction
- Total hydrocarbon content (THC; C<sub>6</sub>–C<sub>36</sub>) calculated as BTEX + TPH
- Spiked exposures confirmed via THC



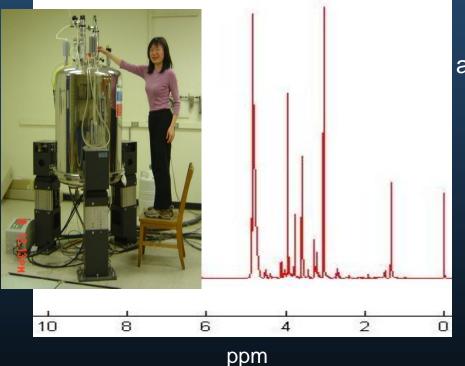
## **Experimental Design and Comparative Toxicity**



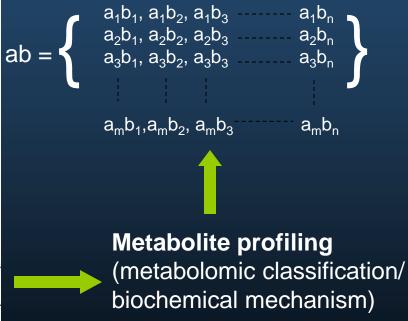
Three total tests for each (WAF and CEWAF)

| Fish Species      | WAF 96-h LC50  | CEWAF 96-h LC50 |  |  |
|-------------------|----------------|-----------------|--|--|
| Salmon Pre-Smolts | 7.6 mg/L THC   | 48.6 mg/L THC   |  |  |
| Salmon Smolts     | 7.5 mg/L THC   | 156 mg/L THC    |  |  |
| Topsmelt Adults   | > 3.4 mg/L THC | 56.4 mg/L THC   |  |  |



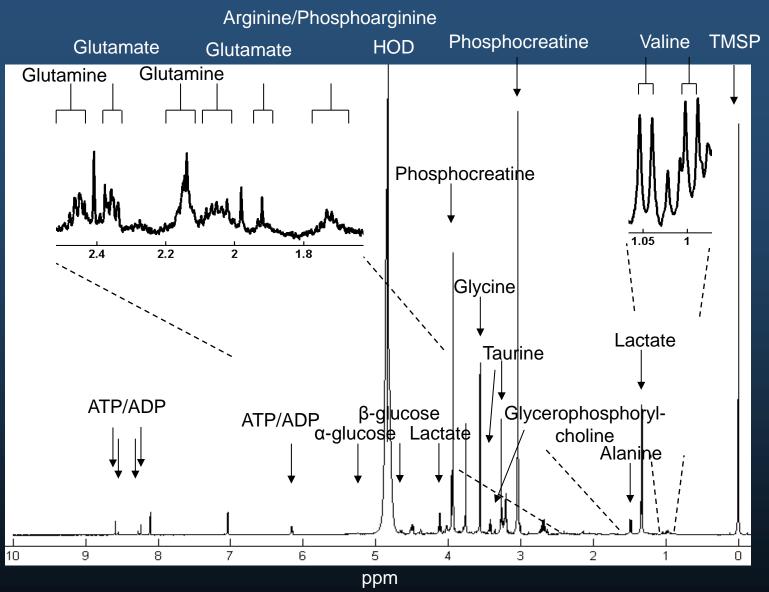

## **NMR-Based Metabolomics Approach**




#### Sample prep (tissue or biofluid)

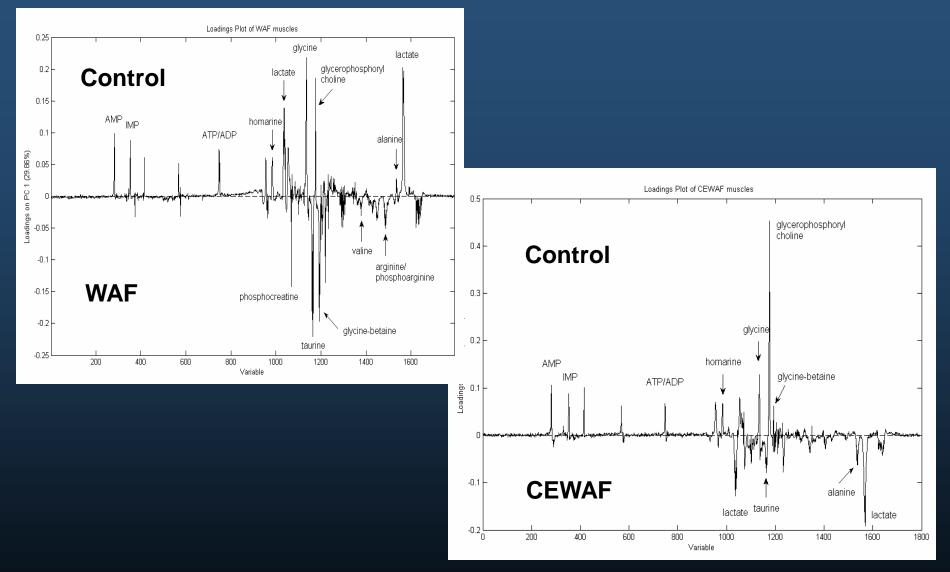
Peak assignment 1-D (<sup>1</sup>H NMR) 2-D (<sup>1</sup>H-<sup>1</sup>H COSY & <sup>1</sup>H-<sup>13</sup>C HSQC)

#### 1-D NMR analysis




#### **Multivariate statistical analysis**






## **NMR Spectrum of Muscle Extract**



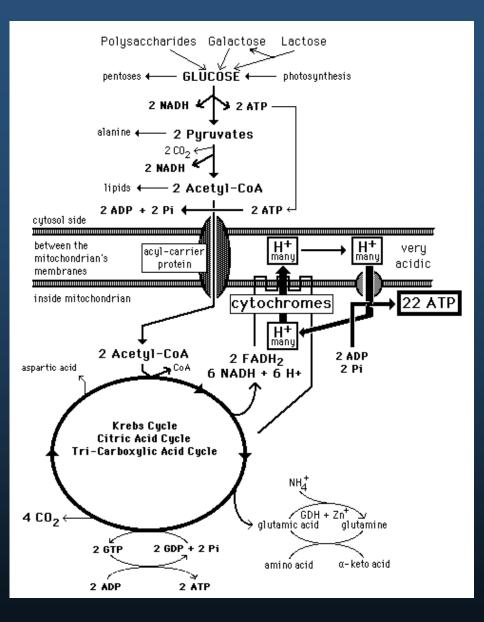


# **Muscle Loadings Plots**





# **Changes in Metabolite Profiles – Topsmelt**


|                          | 96 h         |              | 78           | d            |
|--------------------------|--------------|--------------|--------------|--------------|
| Metabolites              | WAF          | CEWAF        | WAF          | CEWAF        |
| Valine                   | 1            | 1            | $\downarrow$ | Ť            |
| Lactate                  | ↓*           | $\downarrow$ | 1            | 1            |
| Alanine                  | 1            | 1            | $\downarrow$ | ↓*           |
| Arginine/Phosphoarginine | 1            | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| Glutamine                | 1            | $\uparrow$   | $\downarrow$ | $\downarrow$ |
| Succinate                | 1            | 1            | $\downarrow$ | $\downarrow$ |
| Phosphocreatine          | $\downarrow$ | ↓*           | 1            | $\downarrow$ |
| Taurine                  | 1            | 1            | $\downarrow$ | $\downarrow$ |
| Glycine                  | 1            | $\downarrow$ | 1            | 1            |
| AMP                      | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| Histidine                | $\downarrow$ | $\downarrow$ | $\downarrow$ | ↓*           |
| ATP/ADP                  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |

\*P<0.05



# Implications

- WAF and CEWAF *both* increase free amino acids
- Ala, Arg, Gln, Glu, Val may result from proteolysis
- May also be diverted from intermediary metabolism for new protein synthesis
- Diversion may reduce ATP available for development



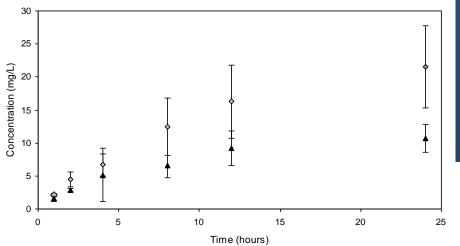


# Why are WAF and CEWAF Results Similar?

- LC50s, based on THC (*dissolved* + *particulate*) were very different: WAF, 7.5 mg/L; CEWAF, 156 mg/L (up to 20x)
- Actions may result from "bioavailable" (dissolved) fractions – not total hydrocarbons (THC)
- Hypothesis dissolved fractions produced in WAF and CEWAF are not significantly different
- Used semi-permeable membrane devices (SPMDs) to determine

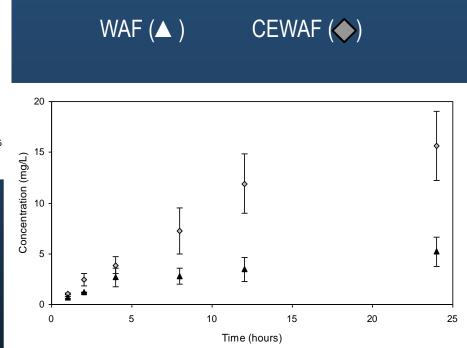


# **Summary – SPMD Techniques**


- Prepare WAF or CEWAF
- Static 24-h exposures
- One SPMD removed at time
  1, 2, 4, 8, 12 and 24 h
- Collect dissolved fraction via dialysis with hexane
- Analysis via GC-MS








## Semi-Permeable (SPMD) Membrane Results



Naphthalene WAF versus CEWAF

 Dissolved concentrations very similar during first few hours (think spike)



1-Methylnaphthalene WAF versus CEWAF



# Conclusions

- Dispersants are one of several tools enhance weathering
- Corexits degrade rapidly under normal environmental conditions – may persist under colder conditions (DWH)
- Dispersants (and DOSS) have LC50s in the ppm range
- WAF and CEWAF toxicity may be species/stage specific
- Corexit 9500 decreases oil lethality to fishes some 7 to 20fold – based on total hydrocarbons
- Metabolic impacts may be similar due to similarity in dissolved (bioavailable) fractions – boils down to analysis



## Acknowledgements

California Department of Fish & Game Office of Spill Prevention & Response (OSPR) The UCD Oiled Wildlife Care Network (OWCN) NOAA – via the California Sea Grant College NOAA – via the UNH Coastal Response Research Center



