MSRC Remote Sensing Capability The Next Significant Enhancement in Spill Response

OSPR-Chevron Response Technology
Workshop
February 25, 2015

MSRC Background

- Extensive Response Experience
 - Over 850 spills post-Exxon Valdez
 - 1996 Portland, Maine tanker spill
 - Katrina/Rita -- 36 responses for 22 customers
 - Deepwater Horizon -- largest surface response contractor
 - √ 12 Responder Class vessels
 - ✓ Over 11,000 employee man days offshore
 - ✓ Post event interviews with employees for continuous improvement

MSRC DWH Observations/Continuous Improvement

- Operations
 - Skimmer effectiveness/efficiency
 - Encounter rate tactics
 - Debris handling
 - Offloading of recovered product
 - Sustainability and redundancy (human element)
- All of the above are downstream of the most critical observation:
 - Efficiently putting resources in the right position (day and night) to recover the oil

Historical Perspective -- Oil Spill Surveillance in U.S.

Exxon Valdez

Gulf Hurricanes of mid-2000 period

Deepwater Horizon

Strategic Tools

- Satellite
 - Optical
 - Radar

Tactical Tools

- Visual Spotting
 - Aerial
 - Eye
 - Photography
 - Video

Strategic - COP

- Added satellite sophistication
- Added aerial sophistication (Ocean Imaging multi-spectral/TIR)

Not real time

 Limited tactical value

Tactical

- Not much change
- Reliance on eye
- Limited shipmounted TIR
- Day light only

Oil Migration

Boat positioning challenges

- Thickest Oil
- False Targets
- Compressed Window (Day light positioning)

Inefficient recovery

Maximal recovery

MSRC Surveillance Objectives -- Post DWH

- Real Time Tactical Information Besides Visual Spotting
 - Classification of oil targets as Recoverable or Nonrecoverable (i.e. sheen)
 - Tracking moving oil
 - Staying in the recoverable oil as it moves
 - Expanding the operating window to low-light conditions (with safety always of highest priority)
 - **➤ MSRC Strike Team Experts**
 - ✓ Versed in operationalized remote sensing

Key Criteria for MSRC's New Remote Sensing Tools

- Multiple sensors/platforms since one does not do all
- Multiple platforms given importance of height of eye
- Portability given span of U.S. coastline and lack of dedicated surveillance planes
- Real time information for tactical use
- Provide "feed" to customer Common Operating Picture (COP)

MSRC Level ABC Remote Sensing For Tactical Oil Spill Surveillance

Level A -- Aircraft
Ocean Imaging Corporation

Provides wide-area spill detection, thickness interpretation, and oil distribution mapping

Level B -- Balloon Maritime Robotics

Tethered up to 500 ft.

Medium range coverage
with long "hang' time

Level C -- Close-In

Optimizes close-in recovery techniques

Multispectral/TIR Cameras

TIR and HD Cameras

X Band Radar and TIR Camera

Level A – Aircraft Using Ocean Imaging System TRACS

- Use pre-identified Aircraft of Opportunity (AOO)
- Systems operated by trained MSRC personnel
 - Staged on each coast (NJ, TX, CA)
- Tactical use
 - Capture images that can be preprocessed on-board to identify oil as recoverable and direct response resources into thickest oil
- Common Operating Picture (COP) oil mapping
 - Capture images over entire spill (or parts) that can be transferred to OI technologists for detailed oil thickness maps
- Available as post-hurricane assessment tool

Example: Visual vs. Digital Imaging of a Slick

Source: Ocean Imaging, 2010

Potential false positives in visual or multispectral mode: Red tide plankton bloom.
Cross-checking with thermal image (no oil signal) identifies false target

Ocean Imaging/MSRC Level A System

"Fully Processed" (off plane) services that can be generated after data is transferred to OI

MSRC Level B - Maritime Robotics Aerostat

- Battery powered, non-wired tether
 - Up to 12-hour "hang time"
 - Rechargeable battery
- Package includes:
 - > HD Camera
 - > TIR Camera
 - > AIS Repeater
- Small, compact easily transportable package
- Proprietary viewing software and gimbal
- WIFI transfer to host vessel

MSRC Level B – Balloons (Aerostats)

Manufactured by Maritime Robotics: Ocean Eye

NOFO: Oil On Water 2012

Level C – Close In OSRV Mounted Systems for Tactical Optimization

- X Band Radar and Thermal Infrared (TIR) on Responder Class Vessels
 - Oil detection (X Band Radar)
 - Better view of oil
 - Stack oil vs. entrainment

MSRC Level C Close-In Containerized X Band/TIR

Transportable Containers For Use with Barges and Large Vessels of **Opportunity**

MSRC Future Considerations

- Level A Enhancements
 - > Data file transfer to vessels
 - **➢ Portable SAR**
- Level D (Drones)
- Level S (Satellites) for tactical use