

Evaluating Unmanned Aerial Systems (UAS) for use in Oil Spill Response and Damage Assessments

Mathew Dorsey
CA OSPR / Chevron Technology Workshop
February 25, 2015

Overview

- Why UAS?
- Evaluation Plan
- Set Up
- Analysis Results
- Conclusions

Response and NRDA Needs for UAS

- Quick and Nimble
- Cover large areas but also focus on targets
- Access to the inaccessible
- Prevents disturbance of sensitive habitats
- Cost effective

Field Testing for Response and NRDA

- Response Recoverable oil and oiled resources we can clean
- Damage Assessment Finer resolution of data
 - Eg. Species affected, Number affected, Dead or Alive
- Developed both Offshore and Onshore scenarios for testing abilities of the PUMA aircraft, its EO and IR Sensors and processing software made by 2d3
 - Offshore Oil Simulation Fluorescein dye
 - Onshore Beach Wrack, Simulated Wildlife,
 Simulated Oil and Recreational Human Use

What is being evaluated?

- Platform Flight Time, Endurance, Stability
- Sensor Resolution, Quality, Recognition, Spatial Accuracy
- Software Georeferencing, Mosaicing, Image Enhancement
- Parts as a whole working together

Offshore Set Up

Oil Simulation

Distance Calculations

Lat/Lon: N 34° 08' 59.17" W 119° 25' 30.19" Alt: 334 ft MSL Mag: 42° Gimbal

FOV Data:
Slant Rng: 171 m
CFOV Hdg: 313°
CFOV Lat/Lon: N 34° 09' 02.34" W 119° 25' 33.92"
Horiz. FOV: 29.6°

Targeting Data:
Target S Lat/Lon: N 34° 09' 01.63" W 119° 25' 33.34"
Target T Lat/Lon: N 34° 09' 02.97" W 119° 25' 34.76"
ADD 32 m LEFT 44 m
Range: 54 m Mag Bearing: 307°

Beach Test Set-Up

"Oil simulations" square
 Targets of 5 - 50 cm sides
 distributed at varying percent
 coverage across 30m x 1 m
 transect

- "Bird simulations" were distributed on and off transect for testing wildlife viewing
- PVC stakes are inserted into each quadrat to see if we can see height with imagery. Each stake has 10 cm increments marked.

Beach Set Up

Beach Set Up

Bird Simulations

Oil Simulations

250 FT Altitude Mid Zoom - VAFB Beach

Quadrat Comparison

Field Oblique Field Overhead UAS 250 FT Altitude

IR

Wildlife Observations

2d3 Video and Image Processing Software

Map window

showing

Live or Recorded

Filtering/Enhancement

Mosaicing

Geo-referencing

Upload to ERMA

Analysis Conclusions

- Proof of concept has been achieved
- Platform
 - Good flight time ~ 3 hours, 15 20 knot winds started to push the plane around
 - Hover capabilities would be useful
 - Vertical Launch and Land would be useful
- Sensor
 - Need Higher Res
 - Better spatial accuracy
 - On the fly Orthorectification using LIDAR and the ability to provide fixed vertical downward viewing
 - Other sensors hyperspectral/multi-spectral/SAR
 - Use of a Gyro for stabilization
- Software Improvements 2d3 very good for viewing and processing
 - What about transfer, storage and querying?

Other Platforms for Testing

- NOAA and SCRIPPS Quadcopters
 - Hover capabilities
 - Portable
 - High definition
 - Easy To Use

- Airphrame
 - Consultant
 - Low Cost
 - Includes processing
 - Preprogrammed flight routine
 - Very high resolution
 - Stills only

