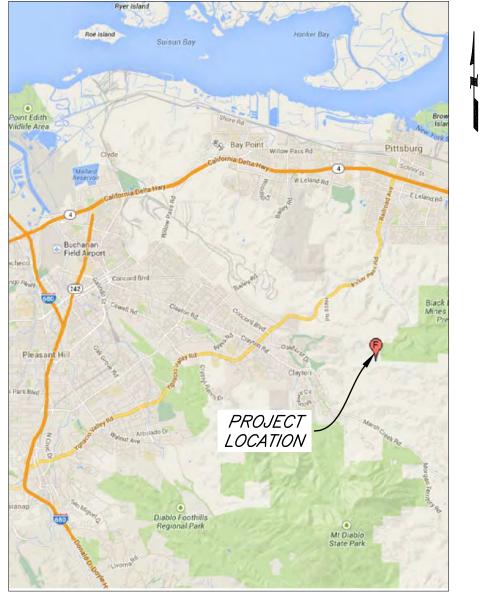
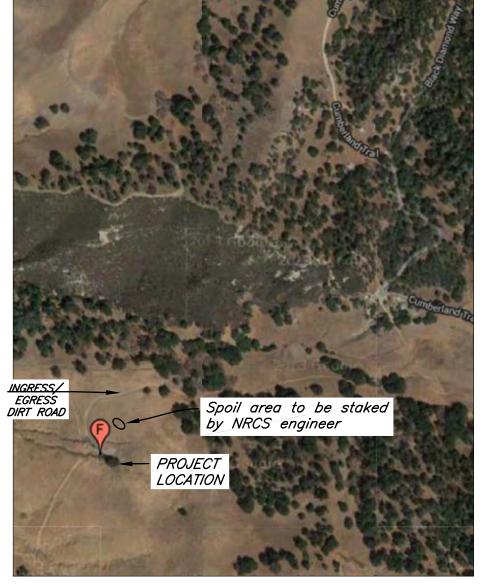
Draft Plans and Specifications

GENERAL

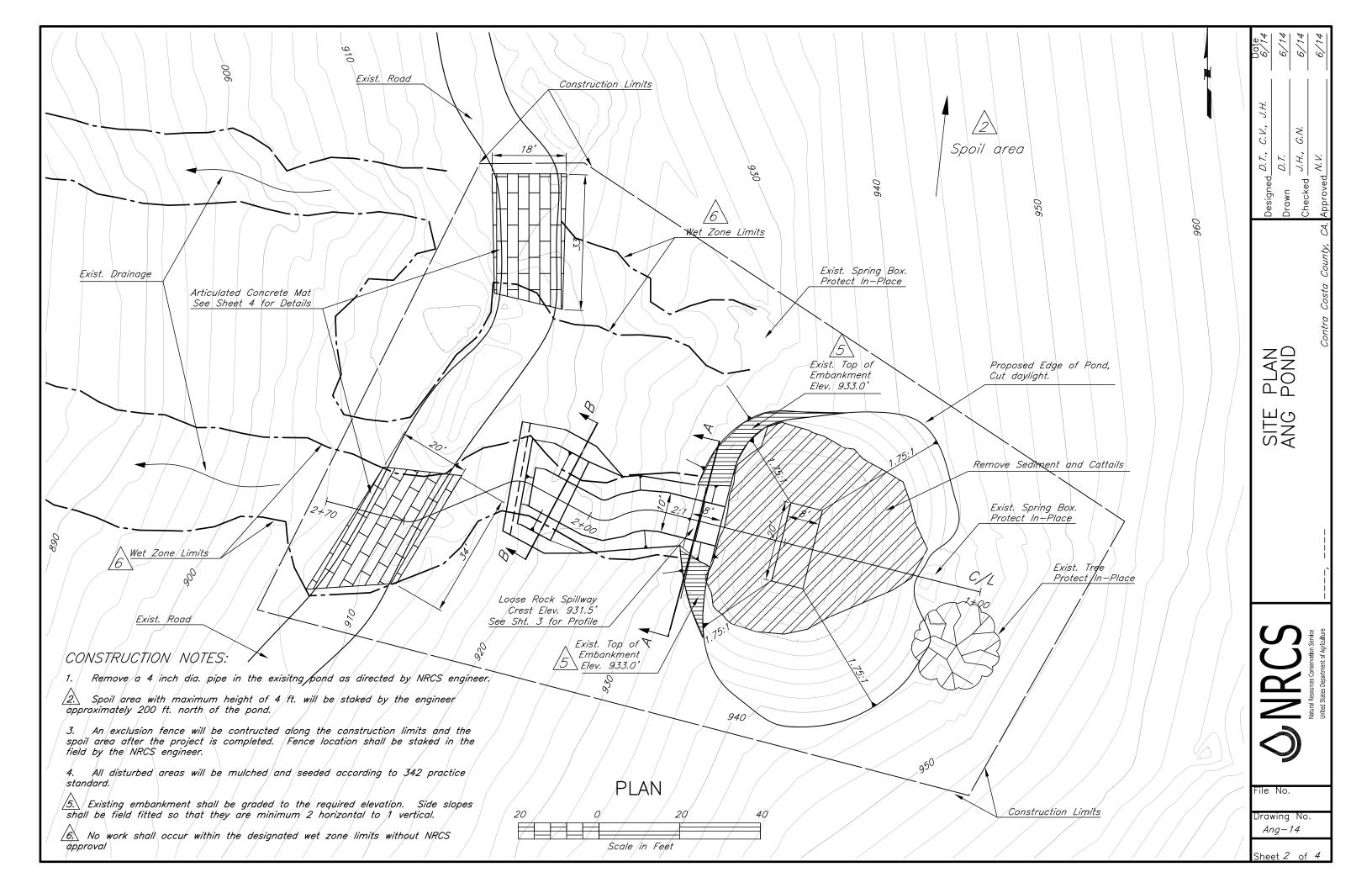

PLANS FOR CONSTRUCTION OF ANG POND RESTORATION

PREPARED BY UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE

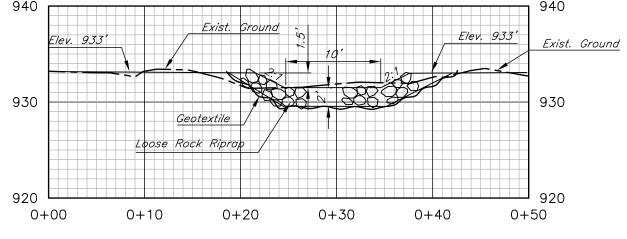

SCHEDULE OF DRAWINGS

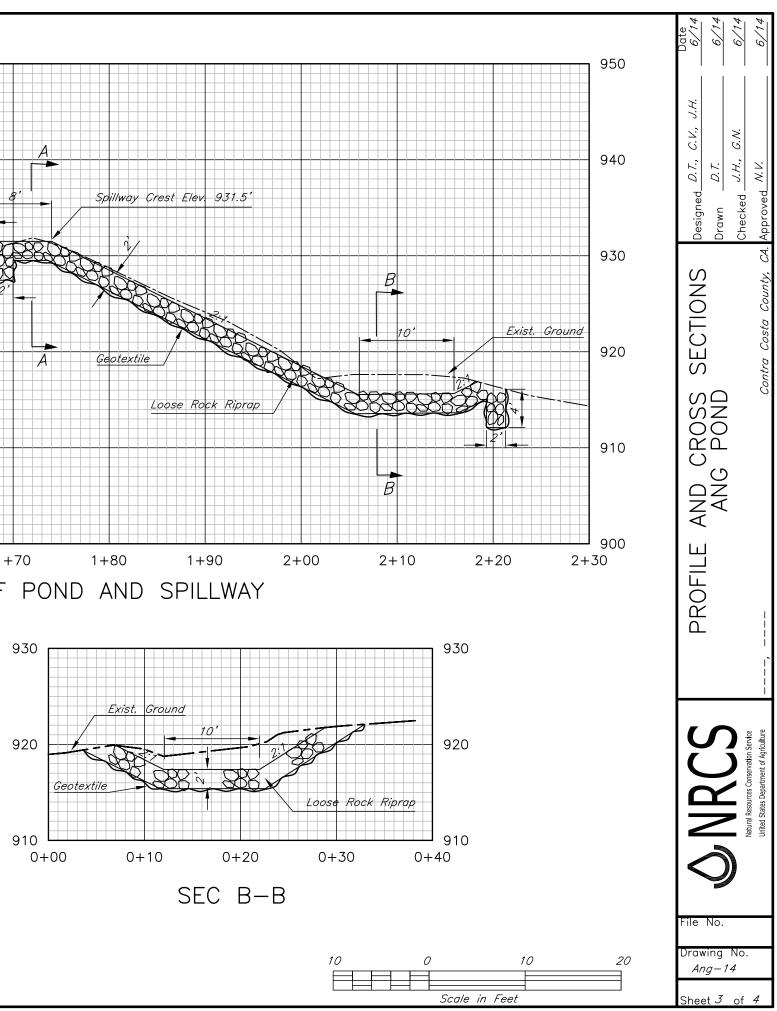
- 1. Vicinity Map and Schedule of Drawings
- 2. Site Plan
- 3. Profile and Cross Sections
- 4. Concrete Mat Detail

- 1. All construction drawings, practic specifications. the drawings or approval of NRC
- 2. Landowner shall needed permits,
- 3. Landowner shall protecting all ut are to be taken gas, oil or elect Service Alert (US construction.
- 4. Cal-OSHA safety during all constr
- 5. All lines and gro approximate. Th excavation limits, field by the eng
- 6. Contact the National Action of the Action
- 7. Benchmark is a E=5000, Elev.=7 East of existing
- JOB CODES: POND ENGINEERING JOB DRAINAGE AREA STORAGE EFF. HEIGHT OF DA STORAGE X EFF. H

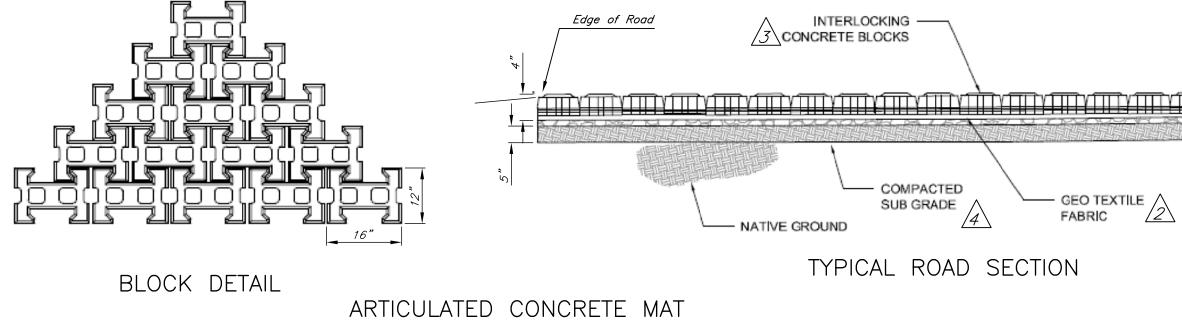

VICINITY MAP - Concord, CA Not To Scale




PROJECT LOCATION MAP


Not To Scale

NOTES			Date 6/14	6/14	•
ice requireme No changes	accordance with t ents and attached are to be made as without written				
•	ible for obtaining and/or right–of–	-	led D.T.	vn <i>D.T.</i> om- ided	/ed ·
tilities. Spec n when worki trical lines.	ble for locating a cial safety precaut ing in the vicinity Call underground 227–2600 prior t	ions of	OF Designed.	Drawn Recorr mende	County, CA App
y requiremen truction.	ts shall be in effe	ect	DULE		Contra Costa
The proposed	on these drawings structure location nits will be stakea	,	SCHEDU	/INGS Pond	Co
tural Resourc prior to col	es Conservation S nstruction.	`ervice	AND	RAWIN ANG PO	
	Coordinates N=50 1 approximately 23		Υ ΜΑΡ	ΠA	
	NED WATERWAY	(468)	CINIT		
CLASS:	///		Ē		
	16 acres				
	0.25 acre-fee	t	1		vice Iture
AM	<i>3 feet</i>	1~2	Č	5	vatural Resources Conservation Service United States Department of Agriculture
71 OF DAM	0.75 acre-fee	[2		Х К	ral Kesources C
			V V		Natu Unite
				No.	
				ving No. <i>ng—14</i>	
			Shee	et 1 of	4


CONSTRUCTION NOTES:

1. Rock riprap shall meet the gradation requirements shown on the Practice Requirements Sheet, or meet CalTrans Facing rock gradation.

2. Geotextile fabric shall be placed beneath all rock and Articulated Concrete Mat according to manufacturer's requirements.

3. Articulated Concrete Mat shall be Armotec or approved equivalent, and shall be installed according to manufacturer's requirements. Exact limits of concrete mat shall be determined and staked by in the field by NRCS.

4. All subgrades shall be approved by NRCS prior to placement of rock or concrete block.

NOT TO SCALE

BACKFILL WITH NON-ERODIBLE MATERIAL	Edge of Road		
File No. Drawing No. Ang-14 Sheet 4 of 4	CONCRETE MAT DETAIL Designed D.T. Drawn D.T. Checked <u>J.H.</u> Checked <u>J.H.</u> Checked <u>J.H.</u> Checked <u>J.H.</u>	Designed <u><i>D.T., C.V., J.H.</i></u> Drawn <u><i>D.T.</i> Checked <i>J.H., G.N.</i></u>	Date 6/14 6/14 6/14

DRAWINGS AND SPECIFICATIONS

Brody Sanders (Ang Pond)

Job Code:

Pond (378), Lined Waterway or Outlet (468)

Engineering Job Class: III, IV

in cooperation with:

Contra Costa Resource Conservation District

Prepared by: Concord Field Office

CALIFORNIA

NATURAL RESOURCES CONSERVATION SERVICE U.S. DEPARTMENT OF AGRICULTURE

TABLE OF CONTENTS

Landowner:Brody SandersProject:Pond & Lined WaterwaysJob Code:Pond (378), Lined Waterway or OutletEngineering Class:III, IV

Design Report Approval Page Hazard Classification Wetland Determination Utility Check Sheet Operation Maintenance Requirements Practice Requirements Construction Specifications Construction Drawings

Appendix A: Calculations

DESIGN REPORT

June 2014

LANDOWNER: Brody Sanders PRACTICES: Pond (378); Lined Waterway (468) LOCATION: Black Diamond Mine, California. COUNTY: Contra Costa RESOURCE CONS. DISTRICT: Contra Costa County RCD NRCS FIELD OFFICE: Concord FO

SUMMARY

The proposed project will construct a small pond which collects and stores water from a spring. Excess water from the spring will outlet from the pond into a rock channel, which then conveys the flow to a stable location which is non-erosive. In addition, a road that is located just downstream from the rock channel will be protected in 2 locations to prevent erosion due to surface flow. It is estimated that the pond will store 0.25 acre-feet of water.

ORIGIN OF REQUEST

Brody Sanders requested assistance through the 2008 Environmental Quality Incentives Program (EQIP). The NRCS Livermore Field Office will provide financial and technical assistance for the installation of practices as outlined in the EQIP contract.

DESCRIPTION OF PROBLEM

An existing pond has lost storage due to siltation. It does meet NRCS standards and is not functioning as planned. Also, itsupports non-native species such as bullfrogs which are predatory to native species also known to be present, such as western pond turtles and California red-legged frogs. The road downstream from the existing pond is eroding in areas that have high moisture due to poor drainage.

ALTERNATIVES AND SOLUTIONS

- 1. Re-build existing pond by removing sediment, improving embankment, and improving spillway to meet NRCS standards. Reduce erosion by installing rock channel and treat existing road surface in wet areas.
- 2. Do nothing.

To address the wildlife resource concerns, sediment removal is the least cost alternative considered. A pond with the proper depth will support the native species of concern. Alternative 1 was selected.

DESIGN CONSIDERATIONS

The proposed design is in accordance with NRCS Conservation Practice Standards 378-Pond and 468-Lined Waterway or Outlet, with the following considerations:

Hydrology

The average annual rainfall is approximately 15". The pond drains a 16acre ephemeral watershed. The pond is also fed by a perennial spring located just upstream. Using the Engineering Field Handbook, Chapter 2 method of computing peak discharge from small rural watersheds, it was found that the flow for a 50-year/24-hour event was approximately 36 cfs. A watershed map and hydrologic calculations are included in Appendix A.

Hydraulics

The lined rock channel which carries flow from the pond spillway to a safe location downstream was sized to carry the 50-year/24-hour storm of 36 cfs. Using Manning's Equation, the depth of flow within the rock

lined channel will be approximately 6-inches with a velocity of approximately 11 feet per second.

Soil Mechanics

The soils at the site are mapped in the Contra Costa County Soil Survey. The subsurface soil conditions of the site consist of clays, silty clay loans, (AcF). Altamont typically has weathered bedrock below 48-inches, and the Fontana has bedrock below 24 inches.

More than 75 percent of these soils pass the No. 200 sieve, and have a Plastic Index from 15 to 25. These soils generally have a very low permeability, but high shrink- swell behavior. When dry the pond floors may crack, and then leak upon re-wetting. This site is expected to be kept continuously wet by the spring. The soils are Lean Clays (CL) bordering on Fat Clays (CH) (Unified Soil Classification). The Standard Procter Unit Density is 95-105 lbs/ft3. These soils will be compacted using a method requirement outlined in the specifications.

The stability of the excavated slopes were checked as well using book values for the existing soil types. For the steepest proposed slope of 1.75 horizontal to 1 vertical, a Factor of Safety was calculated to be 1.5.

CONSTRUCTION

All construction shall adhere to the drawings and specifications. No changes will be allowed without approval of NRCS and any change shall maintain compliance with NRCS standards and specifications. The project is to be built using landowner's or contractor's forces. Layout and inspection will be provided by the NRCS. The landowner shall be responsible for obtaining any needed permits, easements, rights-of-way, locating utilities, or meeting any legal requirements. Cal-OSHA safety requirements shall be in effect during all construction.

OPERATION & MAINTENANCE

Project components require maintenance for satisfactory operation as planned. The landowner/operator shall be responsible for inspection and any necessary repair. See O&M plan dated May, 2014.

REFERENCES

USDA-NRCS. 1961. Soil Survey, Contra Costa County, California.

USDA-NRCS. 1986. Engineering Field Handbook, Chapter 2, "Estimating Runoff'.

USDA-NRCS. 1997. Plunge Pool Basin Design Spreadsheet (CaArea2-ENG-514). Version 1.0 05197, Based on, ASAE Vol. 37(4), 1167-1173, and Vol. 38(5), 1405-1411.

USDA-NRCS. 2007a. Field Office Technical Guide, Sections II and IV.

USDA-NRCS. 2007b. Part 628 National Engineering Handbook, Chapter 45 Filter Diaphragms. 210-VI-NEH, January 2007.

USDC-NOAA. 1973. Precipitation-Frequency Atlas of the Western United States, Volume XI-California.

APPROVAL

The controlling classification factors for Pond (378) are:

- 1. Hazard Class is "A".
- 2. Effective Height is 3 ft.
- 3. PGA<0.2
- 4. Not in a A-P Zone
- 5. Drainage Area is 16 acres.
- 6. Storage x Height is 0.6 $\operatorname{ac-ft}^2$ •
- 7. Embankments over Active Faults are none.

Based on the above factors, the Job Class is Class III.

The controlling classification factors for Lined Waterway or Outlet (468) are:

- 8. Drainage Area is 16 acres. (Cl III)
- 9. Design Flow is 36 cfs. (Cl IV)

Based on the above factors, the project has an Engineering Class of IV.

Prepared by: Date:

Reviewed by:	Date:
J	

Approved by:_____Date:_____

LANDOWNER'S/OPERA TORS ACKNOWLEDGMENT

The landowner/operator acknowledges that:

- a. He/she has received a copy of the construction drawings, practice requirements, and pertinent specifications, and that he/she has an understanding of the contents and requirements.
- b. He/she has obtained all the necessary permits.
- c. No changes will be made in the installation of the job without prior concurrence of the NRCS technician.
- d. Maintenance of the installed work is necessary for proper performance during the project life.

Accepted by:	Date:
CERTIFICATION	
Pond CIN	_Date
Lined Waterway or Outlet CIN	_Date
Lined Waterway or Outlet CIN	_Date

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE

OPERATION AND MAINTENANCE

LANDOWNER: Brody Sanders PRACTICES: Pond (378); Lined Waterway (468) LOCATION: Black Diamond Mine, California. COUNTY: Contra Costa RESOURCE CONS. DIST.: Contra Costa County RCD NRCS FIELD OFFICE: Concord LPO

These structures are an asset to your farm. The estimated life spans of these installations are at least 20 years. The life of a structure can be assured and usually increased by developing and carrying out a good operation and maintenance program.

These structures will require you to perform periodic operation to maintain for satisfactory performance. Here are some recommendations to help you develop a good operation and maintenance program.

GENERAL RECOMMENDATIONS

Pond:

- Annually inspect pond for damage from normal use. Inspect the spillways, inlets, and outlets for proper functioning for their ability to maintain the water level to design elevations.
- Immediately remove any blockage or obstructions and repair any damage.
- Inspect inlet, embankments and spillways after heavy rains for possible damage. Promptly repair any damage.
- Annually inspect the downstream toe of the dam. If there are wet areas or seeps, contact the local NRCS office for additional assistance.
- Maintain vigorous growth of vegetative coverings. This includes reseeding, fertilization, and application of herbicides when necessary. Periodic mowing may also be needed to control height.
- Fill rills and gullies that occur on the embankments and/or spillway and re-vegetate.
- Maintain a grass filter strip around the perimeter of the pond to trap sediment.
- Check downstream floodplain at least once every 5 years to assure life or property will not be threatened in the case of a dam failure.
- Iffences are installed, they shall be maintained to prevent unauthorized or livestock entry.
- Immediately repair any vandalism, vehicular, or livestock damage to any earthfills, spillways, or outlets.
- Removal of debris that may accumulate at the pond and immediately upstream or downstream from the basin.
- Inspect embankments for damage from rodents or burrowing animals. Repair any damage. Take appropriate protective actions to alleviate further damage.
- Remove woody vegetation from embankments.
- Avoid excessive travel on any portion of the system that will harm or destroy the vegetative cover.

Outlet Rock Riprap Channel and Concrete Block Wet Crossings:

- Maintain widths of soil berms or banks.
- Immediately repair any vandalism, vehicular or livestock damage.
- Inspect for damage from rodents or burrowing animals. Repair any damage. Take appropriate corrective actions to alleviate further damage.

UTILITY CHECK SHEET

Reference Engr. Memo-73	
Farm Name: Brody Sanders	Location:
Utilities Involved and Location: Contact utility	companies and call Dig Alert (1-800-227-2600).
Landowner or operator notified (who): Raegar	<u>a Amerine (by whom):</u>
How: Verbal	Date: Fall 2014
Work to be done: Excavation	When: Fall 2014
Utility Company Notified (who):	(by whom):
How:	Date:
Request to locate utility:	
Work to be done:	When:
Request for Company representative to be p	resent:
Utility marked or staked:	Date:
Representative present during construction:	
Contractor Notified (who):	(by whom):
How:	Date:
Type of utility:	Location:
Vertical location in relation to work:	
Horizontal location in relation to work:	
Contractor shown markings or stakes:	
Utility location shown on plans:	
Other remarks:	
Signature:	Date:

ENGINEER'S COST ESTIMATE

Item No.	Work or Material	Spec. No.	Estimated Quantity	Unit	Unit Price	Amount
1.	Excavation	378	600	C.Y.	\$ 7.00	\$4,200.00
2.	Compacted Earthfill	378	100	C.Y.	12.00	\$1,200.00
3.	Rock Riprap	907	80	Ton	120.00	9,600.00
4.	Geotextile Fileter Fabric	905	210	S.Y.	5.00	1,050.00
5.	ArmorTec Block	468	1,200	S.F.	12.00	14,400.00
					Total =	\$ 30,450.00

Landowner: Sanders (Ang) Project: Pond, Lined Waterways

(6/13/14)

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE

PRACTICE REQUIREMENTS

LANDOWNER: Brody Sanders PRACTICES: Pond (378); Lined Waterway (468) LOCATION: Black Diamond Mine, California. COUNTY: Contra Costa RESOURCE CONS. DIST.: Contra Costa County RCD NRCS FIELD OFFICE: Concord FO

Installation shall be in accordance with following drawings, specifications and special requirements. NO CHANGES ARE TO BE MADE IN THE DRAWINGS OR SPECIFICATIONS WITHOUT PRIOR APPROVAL OF THE NRCS TECHNICIAN.

It shall be the responsibility of the owner to obtain all necessary permits and/or rights, and comply with all ordinances and laws pertaining to this installation.

1. Drawings, No.: <u>Ang-14</u> Pages.: <u>1-4</u>

- 2. Practice Specifications: <u>378,468,905,907</u>
- 3. Special Requirements:

Specification 378 – Pond

- a. Any excavated material deemed unsuitable for earthfill by NRCS shall be spread in uniform lifts within the spoil area, approximately 200 feet north of the existing pond. The spoil area's limits will be staked in the field by NRCS.
- b. All material used for fill shall be taken from project site. No import or export material is allowed without NRCS approval. NRCS shall approve all fill material prior to placement.
- c. In section VI Compaction, any method listed is allowed.
- d. Top 4-inches areas to receive fill or area to be excavated, shall be stripped and stockpiled. This material which contains plant material shall be placed uniformly on all finished slopes.

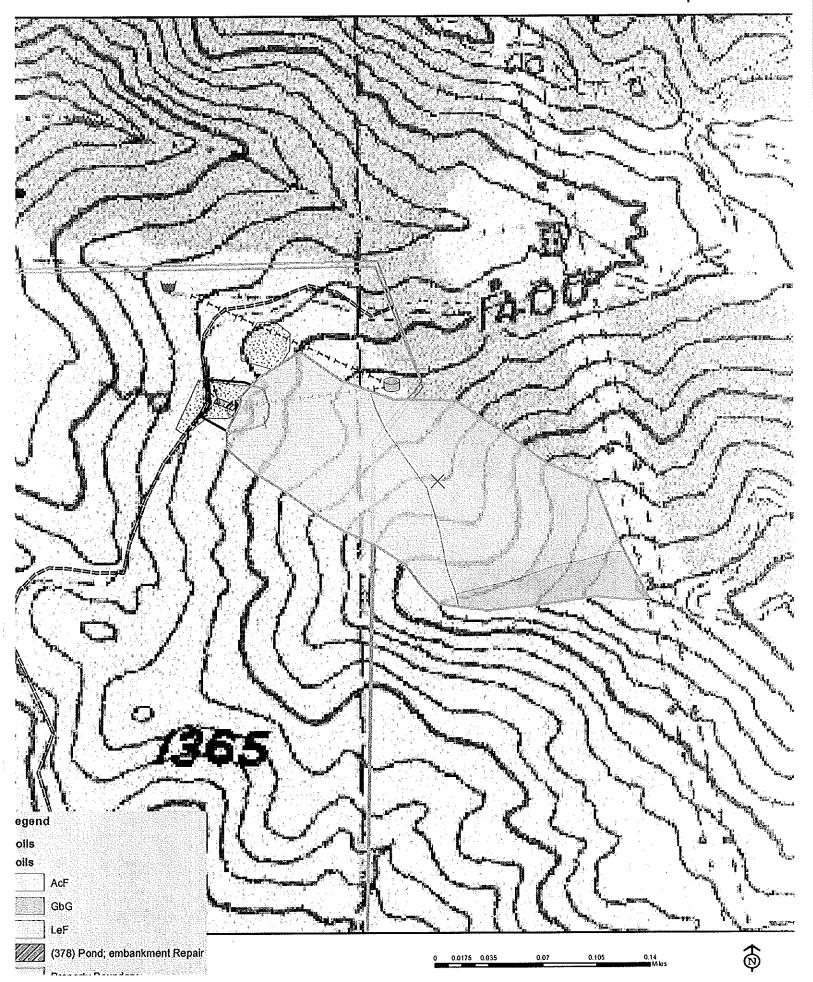
Specification 468- Lined Waterway or Outlet

a. Lining material placed on road shall be 3.5-inch Armortec concrete block or approved equal. Install according to manufacturer recommendations, including foundation preparation, subgrade material, filter fabric and the block.

Specification 905- Geotextile Fabric

a. Fabric shall be placed non-woven with a minimum weight of 5 ounces per square yard.

Specification 907- Rock Riprap


- a. Rock riprap shall be placed as shown on the drawings. Rock gradation in specification 907 shall not apply. Gradation shall be as follows:
 - D100 15-inch
 - D50 9-inch
 - D15 6-inch

Using the CalTrans rock gradation classification, rock classified as "Facing" shall be considered acceptable.

b. All subgrade beneath rock shall be approved by NRCS prior to placement.

APPENDIX A CALCULATIONS

Program EQIP RangelandEngineer: Neftali J. VelYear: 2013Office: Concord FOMap: Plan

.

NOAA Atias 14, Volume 6, Version 2 Location name: Pittsburg, California, US* Coordinates: 37.9450, -121.8960 Elevation: 1527ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lililan Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Avera	age recurren	ce interval(y	rears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.135	0.167	0.211	0.249	0.302	0.345	0.390	0.438	0.508	0.565
	(0.119-0.154)	(0.147-0.192)	(0.185-0.243)	(0.216-0.290)	(0.250-0.368)	(0.278-0.432)	(0.304-0.505)	(0.329-0.590)	(0.361~0.723)	(0.384-0.841)
10-min	0.193 (0.170-0.221)	0.239 (0.211-0.275)	0.303 (0.266-0.349)	0.357 (0.309-0.415)	0.433 (0.359-0.527)	0.494 (0.398-0.619)	0.559 (0.435-0.724)	0.629 (0.472-0.846)	0.728 (0.518-1.04)	
15-min	0.233 (0.206-0.267)	0.290 (0.255-0.332)	0.366 (0.321-0.422)	0.431 (0.374-0.502)	0.523 (0.434-0.638)	0.597 (0.481-0.749)	0.676 (0.526~0.876)	0.760 (0.571-1.02)	0.881 (0.626-1.25)	
30-min	0.319 (0.2810.365)	0.396 (0.349-0.454)	0.501 (0.439-0.576)	0.589 (0.512-0.686)	0.715 (0.593-0.872)	0.816 (0.658-1.02)	0.923 (0.720-1.20)	1.04 (0.780-1.40)	1.20 (0.856-1.71)	
60-min	0.452	0.561	0.710	0,836	1.01	1.16	1.31	1.47	1.71	1.90
	(0.399~0.517)	(0.494-0.644)	(0.623-0.817)	(0.725-0.973)	(0.840-1.24)	(0.932-1.45)	(1.02-1.70)	(1.11-1.98)	(1.21-2.43)	(1.29-2.83)
2-hr	0.661	0.818	1.03	1.21	1.47	1.67	1.89	2.12	2.46	2.74
	(0.584-0.757)	(0.720-0.938)	(0.904–1.19)	(1.05-1.41)	(1.21-1.79)	(1.35-2.10)	(1.47-2.45)	(1.59-2.86)	(1.75-3.50)	(1.86-4.08)
3-hr	0.831	1.03	1.29	1.52	1.84	2.09	2.36	2.66	3.08	3.43
	(0.733-0.951)	(0.904-1.18)	(1.13-1.49)	(1.32–1.77)	(1.52-2.24)	(1.69-2.62)	(1.84-3.06)	(1.99-3.58)	(2.19-4.38)	(2.33-5.10)
6-hr	1.17	1.46	1.84	2,16	2.61	2.97	3.36	3.77	4.35	4.84
	(1.04-1.34)	(1.28-1.67)	(1.61-2.12)	(1.87-2.51)	(2.16-3.18)	(2.40-3.73)	(2.62-4.35)	(2.83-5.07)	(3.09-6.19)	(3.28-7.19)
12-hr	1.55	1.94	2.47	2,91	3.53	4.01	4.53	5.07	5.84	6.47
	(1.37-1.77)	(1.71-2.23)	(2.17-2.84)	(2.53-3.39)	(2.92-4.30)	(3.23-5.03)	(3.53-5.87)	(3.81-6.82)	(4.15-8.30)	(4.39-9.62)
24-hr	2.10	2.67	3.43	4.06	4.93	5.61	6.31	7.04	8.06	8.87
	(1.93-2.33)	(2.45-2.97)	(3.14-3.83)	(3.69-4.56)	(4.35-5.70)	(4.86-6.61)	(5.35-7.59)	(5.83-8.69)	(6.43-10.3)	(6.86-11.7)
2-day	2.65	3.43	4.45	5.28	6.41	7.29	8.17	9.09	10.3	11.3
	(2.43-2.95)	(3.14-3.82)	(4.07-4.96)	(4.80-5.93)	(5.66-7.42)	(6.31-8.58)	(6.93-9.84)	(7.52→11.2)	(8.25-13.2)	(8.76-14.9)
3-day	3.00	3.91	5.10	6.06	7.36	8.35	9.36	10.4	11.8	12.9
	(2.75-3.33)	(3.59-4.36)	(4.66-5.69)	(5.50-6.81)	(6.49-8.51)	(7.23-9.83)	(7.93-11.3)	(8.59~12.8)	(9.40-15.1)	(9.96-17.0)
4-day	3.34	4.36	5.67	6.73	8.15	9.24	10.3	11.5	13.0	14.1
	(3.07-3.72)	(4.00-4.85)	(5.19-6.33)	(6.11-7.56)	(7.19-9.43)	(8.00-10.9)	(8.76-12.4)	(9.47-14.1)	(10.3-16.6)	(10.9-18.6)
7-day	4.16	5.37	6.90	8.13	9.76	11.0	12.2	13.5	15.1	16.4
	(3.82-4.63)	(4.92-5.97)	(6.31-7.70)	(7.38~9.13)	(8.61–11.3)	(9.52-12.9)	(10.4-14.7)	(11.1-16.6)	(12.1−19.4)	(12.7-21.7)
10-day	4.65	5.96	7.62	8.92	10.6	11.9	13.2	14.5	16.2	17.5
	(4.27-5.17)	(5.47-6.64)	(6.97-8.50)	(8.11-10.0)	(9.39-12.3)	(10.3-14.1)	(11.2-15.9)	(12.0-17.9)	(12.9-20.7)	(13.5-23.1)
20-day	6.09	7.78	9.84	11.4	13.5	14.9	16.4	17.8	19.6	20.9
	(5.59-6.77)	(7.13-8.65)	(9.01-11.0)	(10.4-12.8)	(11.9-15.6)	(12.9-17.6)	(13.9-19.7)	(14.7-21.9)	(15.6-25.0)	(16.2-27.6)
30-day	7.35	9.39	11.8	13.7	16.0	17.6	19.1	20.6	22.5	23.9
	(6.75-8.18)	(8.61-10.4)	(10.8-13.2)	(12.4-15.3)	(14.1–18.4)	(15.2-20.7)	(16.2-23.0)	(17.1-25.4)	(18.0-28.8)	(18.5-31.5)
45-day	9.06	11.5	14.4	16.6	19.2	20.9	22.6	24.2	26.2	27.6
	(8.32-10.1)	(10.6-12.8)	(13.2-16.1)	(15.1–18.6)	(16.9-22.2)	(18.1-24.7)	(19.2~27.2)	(20.0-29.9)	(20.9-33.5)	(21.3-36.4)
60-day	10.7	13.6	16.9	19.3	22,2	24.2	26.0	27.6	29.7	31.2
	(9.83-11.9)	(12.5-15.1)	(15.5-18.9)	(17.5-21.7)	(19.6-25.7)	(20.9→28.5)	(22.0-31.2)	(22.9~34.1)	(23.7–38.0)	(24.1-41.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

SCS-ENG-523 Rev. 8-69

Ang Fond - Brody Sanders	STATE		PROJECT	<u>с</u> ,	2	
UNDET Rock Over Flow downstry of Spring other 1 or Field engineer determined 16 acres of D.A. to this location in swale, and anoulded 16 efs for 50 9% events. Try 10 foot wide erest. Neglect orde shass be cauce keeping Flow shallow. Very rough rock surface, so use "O" of Cliffle as 210 instead of 3. $H' = \left(\frac{2}{CL}\right)^3 = \left(\frac{36}{2(10)}\right)^3 = 15$ foot on, weir crest for 50 year Flow. Olient desires some open water in pool, there fore needs to be greater than 3-feet deep. Surveys of site show low elevation at approx. 93/15 feet. Set weir (new) at 9315, and excente small up stream spring rinage to 922.5 For downstream shope protection from	CA		Hho Hho	DATE	Brody Sander JOBNO.	<u>^</u>
Field engineer determined 16 acres of D.A. to this location in swale, and anterlated 16 ets tor 50 MK events: Try 10 toot wide crest. Neglect evel show be cauce keeping Flow shallow. Very rough vock surface, so use "2" of clittle as 2.0 instead of 3. $H = (Q)^3 = (34)^3 = 1.5$ feet So water will build to about 1.5 foot on, weir crest for 50 year flow Client desires some open water in pool, there fore needs to be greater them 3-tiest deep, surveys of othe show low elevation at approx, 931.5 feet. Set weir (new) at 9315, and excente small up stream spring streage to 922.5 For downstream shope protection from	SMA	5-20-14	1	1		
to this location in swale, and enladeted 16 cFs tor 50 YR events: Try 10 toot wide crest: Neglect ende shas be cause recently Flow challow. Very rough volk surface, so use "C" of Chitch as 2.0 instead of 3. $H = \left(\frac{Q}{CL}\right)^3 = \left(\frac{36}{200}\right)^3 = 1.5$ feet So water will build to about 1.5 toot on, weir crest for 50 year Flow. Client desires some open water in pool, there fore needs to be greater them 3-feet deep. Surveys off site show low elevations at approx. 981.5 feet. Set weir (new) at 931.5, and excavate small up stream spring climage to Re2.5 For downstream shore protection from	<u> </u>	Overtion	J downstm	ot spring	SHEET	OF
to this location in swale, and enladeted 16 cFs tor 50 YR events: Try 10 toot wide crest: Neglect ende shas be cause recently Flow challow. Very rough volk surface, so use "C" of Chitch as 2.0 instead of 3. $H = \left(\frac{Q}{CL}\right)^3 = \left(\frac{36}{200}\right)^3 = 1.5$ feet So water will build to about 1.5 toot on, weir crest for 50 year Flow. Client desires some open water in pool, there fore needs to be greater them 3-feet deep. Surveys off site show low elevations at approx. 981.5 feet. Set weir (new) at 931.5, and excavate small up stream spring climage to Re2.5 For downstream shore protection from						
16 cts tor 50 YR events. Try 10 toot wide crest: Neglect cide shass be cause recenny Flow shallow. Very noush vock surface, so use "Q" of Clatter as 2.0 instead of 3. H = (Q) ³ /s = (36) ³ /s = 1.5. Feet So water will build to about 1.5 Foot on, weir crest for 50 year Flow. Client desires some open water in pool, there fore needs to be greater than. 3-Feet deep. Surveys of site show low elevention at approx. 931.5 feet. Set weir (new) at 931.5, and excepte small up stream spring rives to 922.5 For downstream shope protection from		Field on	gineer de	termined	16 acres of	D.A.
Try 10 Foot wide crest: Neglect side shase because recenny Flow shallow. Very rough vock surface, so use "Q" of CLHTA as 2.0 instead of 3. $H' = \left(\frac{Q}{CL}\right)^3 = \left(\frac{3Q}{2L(0)}\right)^3 = 15$ Feet So water will build to about 15 Foot on weir crest for 50 year flow. Client desires some open water in pool, there fore needs to be greater than 3-feet deep. Surveys of othe show low elevations at approx. 921.5 feet. Set weir (new) at 931.5, and excavite small up stream spring streage to 922.5 For downstream shope protection from		to this	lo cution	in swale	e, and an	culated
be cauce recently Flow shallow. Very roush volk surface, so use "C" of clifts as 2.0 instead of 3. $H' = \left(\frac{Q}{CL}\right)^3 = \left(\frac{3Q}{3LO}\right)^3 = 1.5$ feet So water will build to about 1.5 Foot on we'r crest for 50 year Flow Olient desires some open water in pool, there fore needs to be greater than 3-feet deep. Surveys of site show low eleventrom at approx. 931.5 feet. Set we'r (new) at 931.5, and excerta small up stream spring strase to 922.5 For downstream shore protection from		16 cts	for E	50 YIL even	t.	
volk surface, so use "C" of chitth as 2.0 instead of 3. $H = \left(\begin{array}{c} 0 \\ cL \end{array} \right)^{3/2} = \left(\begin{array}{c} 36 \\ 2L \end{array} \right)^{3/2} = 1.5$ Feet: So water will build to about 1.5 Foot on, we'r crest for 50 year Flow. Client desires some open water in pool, there fore needs to be greater than 3-Feet deep, surveys of site show low eleventrons at approx. 931.5 Feet. Set we'r (new) at 931.5, and excende small up stream spring rivese to 922.5 For downstream slope protection from		Try 10	s foot w	ide crest	Neslect	side ships
instead of 3. H: $\left(\frac{Q}{GL}\right)^{\frac{3}{2}} = \left(\frac{34}{2(10)}\right)^{\frac{3}{2}} = 1.5$ Feet. So water will build to about 1.5 Foot on, weir crest For 50 year Flow. Client desires some open water in pool, there fore needs to be greater than 3-feet deep. Surveys of site show low eleventions at approx. 931.5 feet. Set weir (new) at 931.5, and excende small up stream spring strage to 922.5 For downstream slope protection From				~		
H = (Q) ³ = (34) ³ = 1.5 Feet So water will build to about 1.5 Foot on weir crest for so year Flow. Client desires some open water in pool, there fore needs to be greater than 3-Feet deep. Surveys of site show low eleventions at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate SMALL up stream spring storage to 922.5 For downstream clope protection from				sa use."	C" of CLIF	h as 2.0
So water will build to about 1.5 Foot on, weir crest for 50 year Flow. Olient desires some open water in pool, there fore needs to be greater them. 3-Feet deep. Surveys of site show low elevention at approx. 931.5 Feet. Set weir (new) at 931.5, and excerte small up stream spring streage to 922.5 For downstream slope protection from		in stea	tor 3.	34	31 3	
on, weir crest for 50 year Flow. Client desires some open water in pool, there fore needs to be greater than 3-Feet deep, surveys of oite show low elevention at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate small up stream spring charage to \$22.5 For downstream slope protection from			$H = \begin{bmatrix} 0 \\ c \end{bmatrix}$	-) ^s = (-		. 5
Client desires some open water in pool, there fore needs to be greater than 3-Feet deep, surveys of site show low eleventron at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate small up stream spring strage to 922.5 For downstream slope protection From		So w	later will	build to	about 1.5 -	201
there fore needs to be greater than 3-Feet deep, surveys of site show low elevention at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate small up stream spring rhouse to 922.5 For downstream slope protection from		Θn W	ein crest	For 5	o yen Fla	
3-Feet deep, Surveys of site show low eleventrom at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate small up stream spring strenge to 922.5 For downstream slope protection From			• • • •			
low elevation at approx. 931.5 Feet. Set weir (new) at 931.5, and excavate small up stream spring rivinge to 922.5 For downstream slope protection From						
Set weir (new) at 931.5, and excavate small up stream spring riverage to \$22.5 For downstream slope protection From						· · · · · ·
SMAll up stream spring storage to \$22.5 For downstream slope protection From		:				
weir crest to new water crossing,		For dou	unstream	slope p	protection	From
		weir c	rest to	new wa	tor crossing)

SCS-ENG-523 Rev. 8-69

STATE PROJECT CA Ans TH Pona CHECKED BY BY DATE DATE JOB NO. TH SUBJECT 2_OF ined Waterway SHEET_ depress rock protection about 6-inches below existing grade. 4! Crest eled 53294 931,5 Filter Faloric New armoral Crossing It Q=36 cfs, and with almost 3:1 downista slope, water Flow will be quite turbulant. Yn it Flowed smouth = V= 1-486 R3(s)k. y n= 0,04, s= 0.5 R3 V Q 11.3 0.3 ,43 3,2 36 25 1/n 2 0.3 Fact 0.35

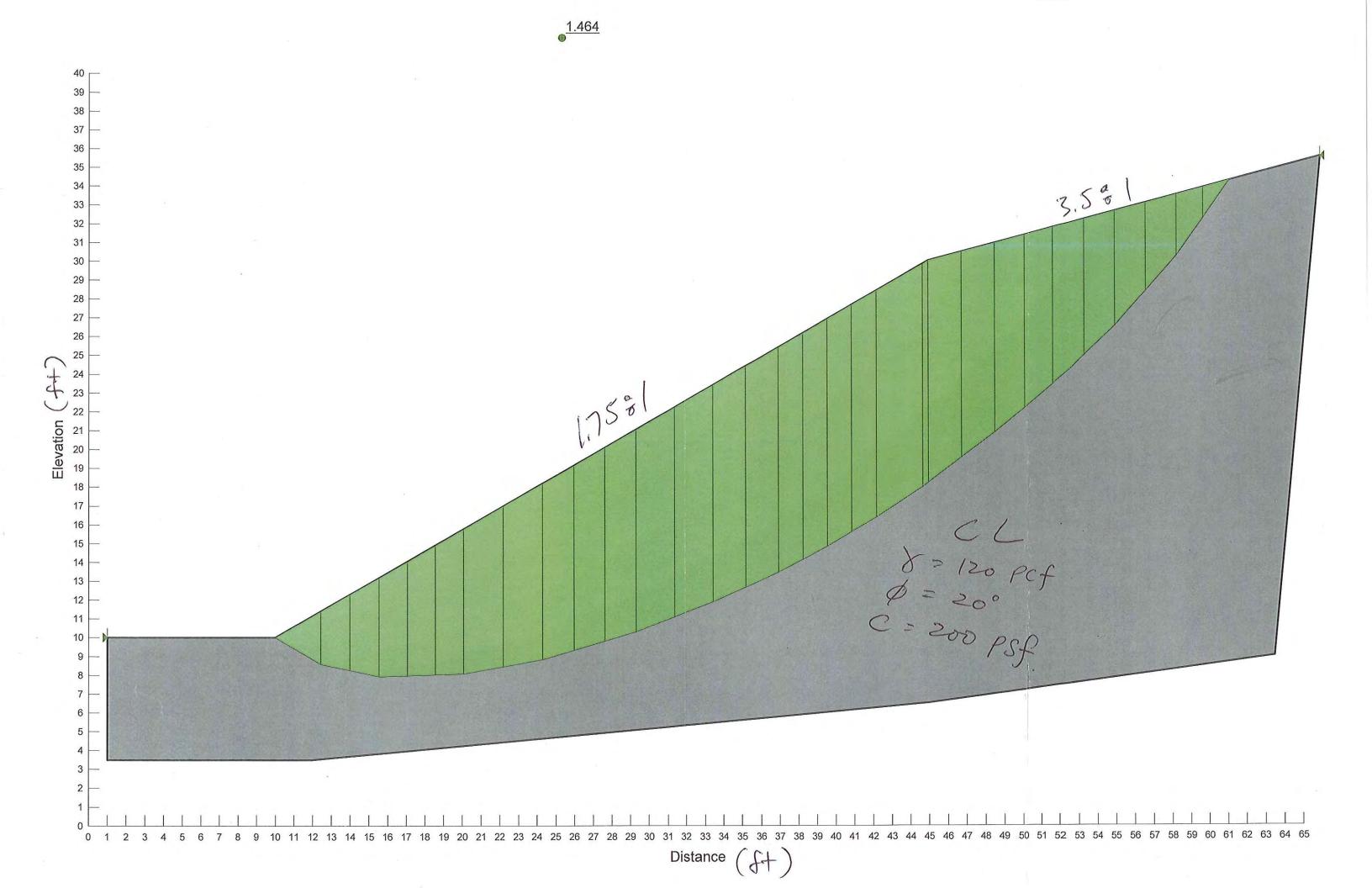
SCS-ENG-523 Rev. 8-69

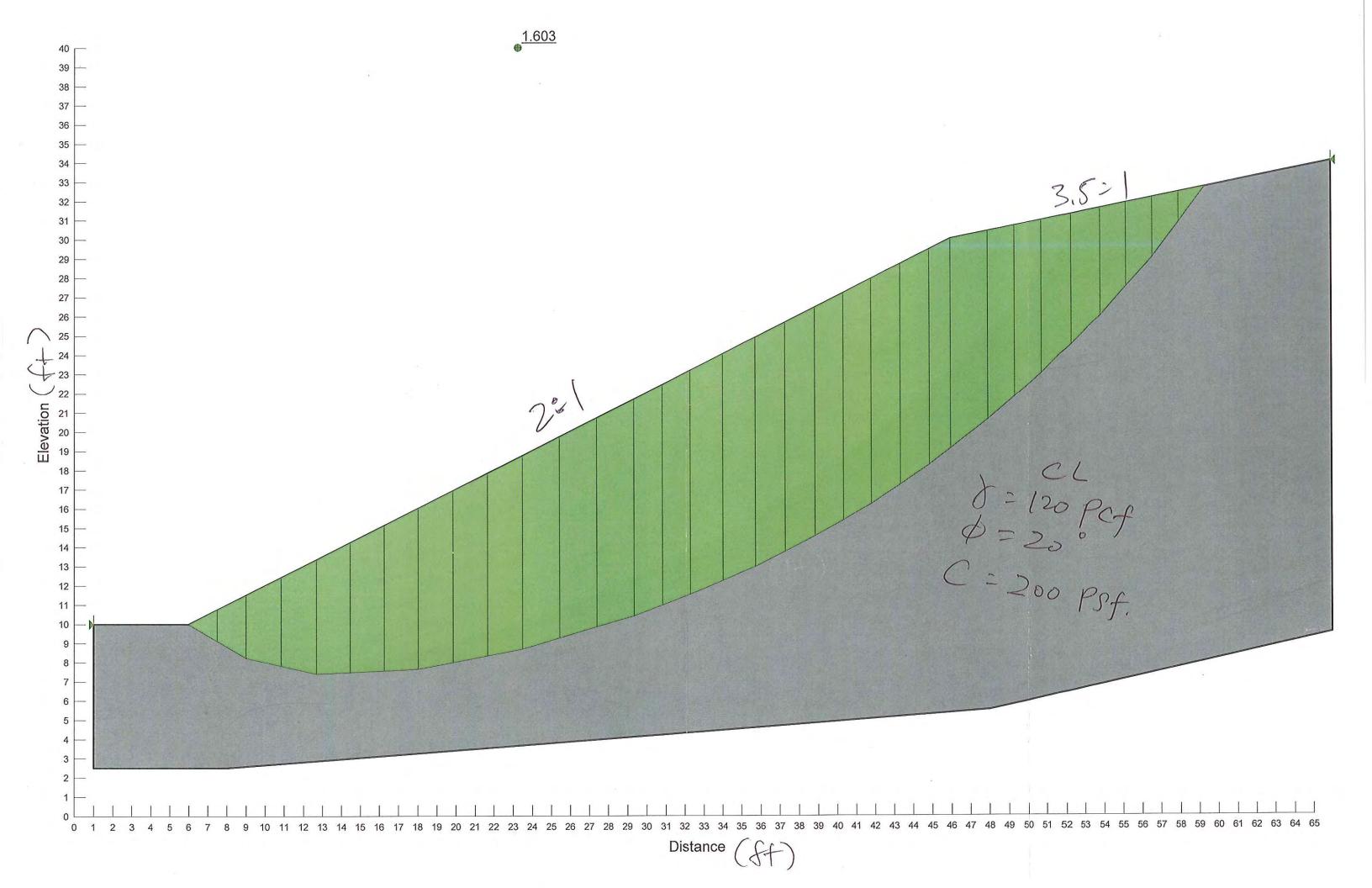
:

STATE CA		PROJECT An.	í.		······································		
BYJH	DATE	CHECKED BY	DATE	Jo	DB NO.		
SUBJECT			······································	รห	IEET_3	つ だ	
1		, <u>}</u> ,		:			
		19 E		· · ·			·
			•				
	Size	Rock Diameter	•; : 				:
				· ·			
		V= 11 tos.				t :	•
						:	
1 1 1 1 1 1							
to gran the	p. 1	has at 1	in other star	E.		011	
	Kean	ty check- rock, Flow	41 deck	12.	on one	8	
ÿ I	Assume	ruale delles	k K W	ater set	Force		
	:						
		$= e(v)^2 y(1)$	E)				
*							
:	ŀ	= 1,94 (11) (3	3)(2) =	39 100	inds		
						X	
		8 trich vock u	eight	(#smr /	62.4)(2.5)=71	pomd
							- feeter (
:							
	E.	inde max	rude si	re, an	sillar		
				Acresonation			
3. 1		interleck T		and a state of the			
	. :		2	Anna 14			
	Grand	stern -	10	PASSIAL	. 1	*	5
		- C	2" 10	20		e Sheeds	A
			s" 5			and the second	avit
						For any	-
	/	4	1" 22	0			
			75				•

COMPUTATION SHEET SCS-ENG-523 Rev. 8-69

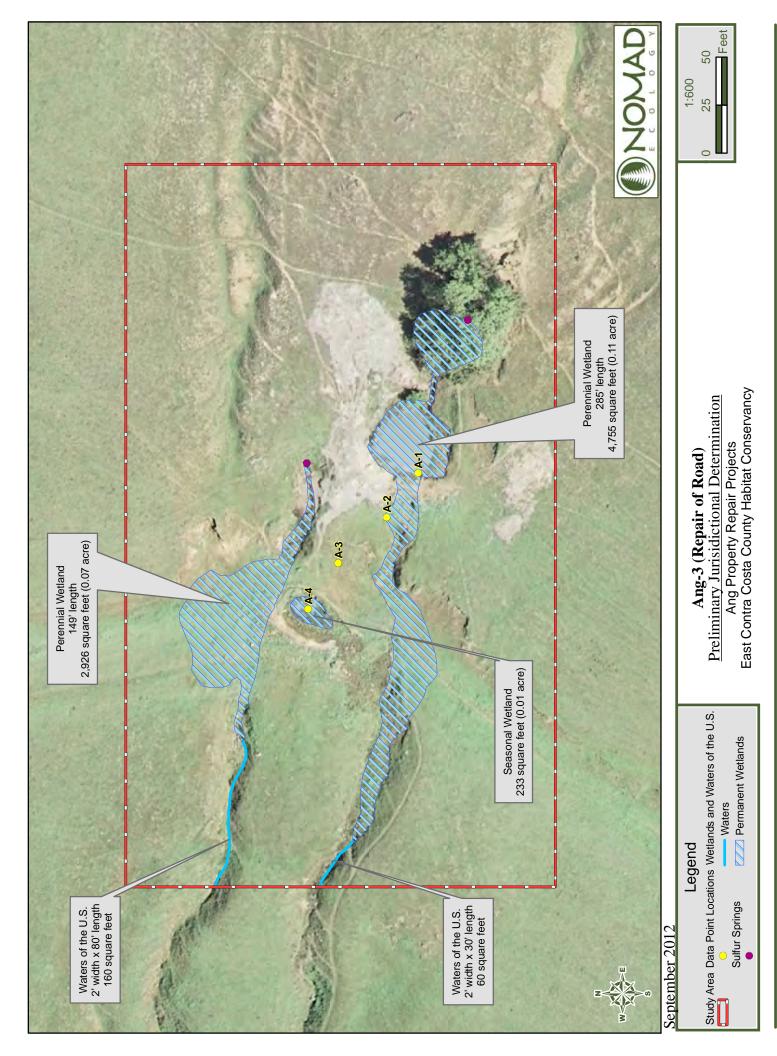
TE CA	1	PROJECT Ang		1		
JH	DATE	CHECKED BY	ATE	JOB NO.		
JECT				SHEET_	4 OF	
1	01.	AN IS CO	m	in the	11. 8.	
	Che	ete Rock Size	against	131	760	
	Rocksize	0.5- slope	Cheede	- 1	÷ 2	
and the second se				i.		4
5,468	5	= [q (s) -2 4.75(10)-2	70.53	:	: * *	
oct	DSD	Lq(s)		1.		
lesign		4.75(10)2			-	
riterion	and the second				· .	
		y's	= 0.5			
		R.	= 0.30 +1			
		1	= 0.5 = 0.30 Fi = 0.04 = 0.04 10 = 3.6			
	D	9-1	同日			
· ·		5 1 1 1	158 0.53			
	Dso	- 53.6(015	22			
	100 mm	4.75 (10)				
	D5	= 81.9 inclu	5	- Mar		
	s a been					1
				····· •		
	Us	e Doo = 9 "				
		11	. 01		ν	
		15 10	0 % passing			
(<i>i</i> .		9" - 3 6" - 1	5% possing			
	1	9" 4	P	1		
		61 1	5% passin	1		
	÷				: . I	ini e
				· .		11
	:				-	
			1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -			


SCS-ENG-523 Rev. 8-69


STATE CA		PROJECT Ang		
BY JH	DATE	CHECKED BY	DATE	JOB NO.
SUBJECT				SHEET 5 OF
	<u>Avantit</u> R	12 tomas at 1 2 tomas la Use 9"-12" 2 tomas la Use 9"-12" 2 tomas 2 t	rger rock = Use 24"4 = 50CY	sizes

Computation Sheet U.S. Department of Agriculture NRCS-ENG-523A Rev. 6-2002 Natural Resources Conservation Service State Project Checked by Date CA T 6/14 (By D Job No. Subject Quantity Calculation. Sheet ______ of Excavation Exercited PMA (from Civil 3 D) N 500 123 Rocklined spillway. 2' (depth) × 14' (width) × 55' (leigth) = 1,400 873 = 52 yd3. concrete mat 0.33 (4"depth) x (20×30)+ (18×30) 1380 At 3 = 14 Yd3 Total Excavation = 570 CY, Use Goo Cilo Concrete Mat (20×30) + (18×30) = 1,140 84². Use [1,200 ft? Concrete Mat Gestestile Rock lined spillury 14' (midth) × 50' (length) = 700 gg= -785Y. Concrete Mat 1,140 ft2 = 127 SY Total Geotoxtile = 205 54 Use [210 54]

Area	15.57	acres	Contour	Lenth				
			1760	20				
Longitud	-12	1.90	1720	260				
Latitud	37	.95	1680	495				
50 yr/ 24 hr	5.61	în	1640	745				
50 yr/ 24 m	36	cfs	1600	780				
Watershed L	1,640	ft	1560	740				
			1520	710				
			1480	730				
			1440	515				
			1400	350				
			1360	245				
			Σ	5,590				
			Slope Ave (Y%)	33 %			


Slope Adjustment

Draft Wetland Delineation

Project Location Photographs (Taken 08/08/2012)

Ang-3

Southern sulfur spring under canopy of coast live oak.

Pond below southern sulfur spring (south).

Pond and drainage below southern sulfur spring (east)

Downstream of southern sulfur spring (south).

Northern sulfur spring (north).

Drainage below northern sulfur spring (north).

Downstream of northern sulfur spring (northwest).

Unvegetated barren on slope (east).

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Ang-3 Sulfur Springs Wetland	_ City/County:Cont	Sampling Date: 8/10/12	
Applicant/Owner: East Contra Costa Habitat Conservancy		State:CA	Sampling Point: A-1
Investigator(s):E. McDermott, H. Bartosh	Section, Townshi	p, Range: Section 7, T1N, R1	E
Landform (hillslope, terrace, etc.): hillslope terrace	Local relief (cond	cave, convex, none):concave	Slope (%): 2
Subregion (LRR):C - Mediterranean California Lat:42	00316 Northing	Long:596753 Easting	Datum: UTMNAD83
Soil Map Unit Name: Altamont-Fontana Complex 30-50% slope	es	NWI classifica	ition:none
Are climatic / hydrologic conditions on the site typical for this time of y	year?Yes 💿	No (If no, explain in Re	marks.)
Are Vegetation Soil or Hydrology significant	ly disturbed?	Are "Normal Circumstances" pr	resent? Yes 💿 No 🔿
Are Vegetation Soil or Hydrology naturally p	problematic?	(If needed, explain any answers	s in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing	g sampling poi	int locations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes No			

Hydropnytic vegetation Present?	res 🕐	NO (
Hydric Soil Present?	Yes 💽	No 🔘	Is the Sampled Area			
Wetland Hydrology Present?	Yes 🜘	No 💿	within a Wetland?	Yes 💿	No 🔿	
Remarks:			·			

VEGETATION

	Absolute	Dominant		Dominance Test v	vorkshee	t:		
Tree Stratum (Use scientific names.)	% Cover	Species?	Status	Number of Domina	nt Specie	S		
1.				That Are OBL, FAC	CW, or FA	C: 1		(A)
2.								
3.				 Total Number of Do Species Across All 		1		(B)
4.				-	otrata.	1		(0)
				Percent of Domina				
Total Cove Sapling/Shrub Stratum	r: %			That Are OBL, FAC	CW, or FA	C: 100.	0 %	(A/B)
1.				Prevalence Index	worksho	ot-		
				Total % Cover			b. a	
2						Multiply		
3				OBL species	95	x 1 =	95	
4.				FACW species	5	x 2 =	10	
5.				FAC species		x 3 =	0	
Total Cover	r: %			FACU species		x 4 =	0	
Herb Stratum				UPL species		x 5 =	0	
1.Polypogon monspeliensis	5	No	FACW	Column Totals:	100	(A)	105	(B)
2. Thypha angustifolia	95	Yes	OBL		100		100	
3.				Prevalence Ir	ndex = B/	A =	1.05	
4.		·		Hydrophytic Vege	etation Inc	dicators:		
5.				🖌 🗙 Dominance Te	est is >50%	6		
6.		·		× Prevalence Inc	dex is ≤3.0) ¹		
7.				Morphological				ng
8.				- data in Ren	narks or o	n a separate s	sheet)	
Total Cover	100			- Problematic Hy	ydrophytic	vegetation ¹	Explain)
Woody Vine Stratum	100%							
1.				¹ Indicators of hydri	ic soil and	d wetland hyd	rology r	nust
2.	·			be present.				
Total Cover	r: %			Hydrophytic				
				Vegetation	-	-		
% Bare Ground in Herb Stratum % % Cover	r of Biotic (Crust	%	Present?	Yes 🖲	No 🔿		
Remarks: Location is at margin of pond.								

SOIL

Profile Des	cription: (Describe t	o the depth	needed to docun	nent the	indicator of	or confiri	m the absence of indicators.)
Depth	Matrix			Feature	-		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture ³ Remarks
0-12	10YR3/2						loamy muck
	Gley 2 5/5PB						
¹ Type: C=C	Concentration, D=Deple	etion, RM=Re	educed Matrix.	² Locatio	n: PL=Pore	Lining, F	RC=Root Channel, M=Matrix.
³ Soil Textur	es: Clay, Silty Clay, S	andy Clay, L	oam, Sandy Clay	Loam, Sa	andy Loam	Clay Loa	am, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sand.
Hydric Soil	Indicators: (Applicable	e to all LRRs,	unless otherwise	noted.)			Indicators for Problematic Hydric Soils:
Histoso	. ,		Sandy Redox	. ,			1 cm Muck (A9) (LRR C)
	pipedon (A2)		Stripped Ma	. ,			2 cm Muck (A10) (LRR B)
	listic (A3)		Loamy Muc	•	. ,		Reduced Vertic (F18)
	en Sulfide (A4)	`	Loamy Gley		(F2)		Red Parent Material (TF2)
	ed Layers (A5) (LRR C)	Depleted Ma	. ,			Other (Explain in Remarks)
	luck (A9) (LRR D)	(111)	Redox Dark		· · ·		
	ed Below Dark Surface Dark Surface (A12)	(A11)	Depleted Da		. ,		
	()		Redox Depr		(го)		⁴ Indicators of hydrophytic vegetation and
	Mucky Mineral (S1) Gleyed Matrix (S4)		Vernal Pool	5(F9)			⁴ Indicators of hydrophytic vegetation and wetland hydrology must be present.
	Layer (if present):						weitand hydrology must be present.
Type:	Layer (il present).						
Depth (ir	achoc):						Hydric Soil Present? Yes (No (
	·	larving at th					nyune son Fresent? Tes (No (
Remains. 3	soils are dark with g	leying at th	e son surface.				
HYDROLO	DGY						

Wetland Hydrology Indicators:			Secondary Indicators (2 or more required)
Primary Indicators (any one indicator is sufficient	ent)		Water Marks (B1) (Riverine)
Surface Water (A1)	Salt Crust (B11)		Sediment Deposits (B2) (Riverine)
High Water Table (A2)	Biotic Crust (B12)		Drift Deposits (B3) (Riverine)
Saturation (A3)	Aquatic Invertebrates (I	313)	Drainage Patterns (B10)
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor	(C1)	Dry-Season Water Table (C2)
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres	along Living Roots (C3)	Thin Muck Surface (C7)
Drift Deposits (B3) (Nonriverine)	Presence of Reduced I	ron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iron Reduction	in Plowed Soils (C6)	Saturation Visible on Aerial Imagery (C9)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Rema	ırks)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)			FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes No	Depth (inches):	3	
Water Table Present? Yes O No	Depth (inches):		
Saturation Present? Yes No (includes capillary fringe)	Depth (inches):	12 Wetland Hy	drology Present? Yes 💿 No 🔿
Describe Recorded Data (stream gauge, moni	toring well, aerial photos, previo	ous inspections), if availa	ble:
Remarks: Areas of standing water are prese	ent and soils are saturated		
incus of standing water are press	ent and sons are sutarated.		

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Ang-3 Sulfur Springs Wetland	City/County:Con	tra Costa County	Sampling Date:8/10/12
Applicant/Owner: East Contra Costa Habitat Conservancy		State:CA	Sampling Point: A-2
Investigator(s):E. McDermott, H. Bartosh	Section, Townsh	ip, Range: Section 7, T1N, F	₹1E
Landform (hillslope, terrace, etc.): hillslope	Local relief (cond	cave, convex, none):concave	Slope (%):10
Subregion (LRR):C - Mediterranean California	at:4200321 Northing	Long: 596746 Eastin	g Datum:UTMNAD8
Soil Map Unit Name: Altamont-Fontana Complex 30-50% s	lopes	NWI classifie	cation:none
Are climatic / hydrologic conditions on the site typical for this time	e of year? Yes 💿	No (If no, explain in F	Remarks.)
Are Vegetation Soil or Hydrology signifi	cantly disturbed?	Are "Normal Circumstances"	present? Yes 💿 No 🔿
Are Vegetation Soil or Hydrology natura	ally problematic?	(If needed, explain any answe	ers in Remarks.)
SUMMARY OF FINDINGS - Attach site map show	wing sampling po	int locations, transects	, important features, etc.
Hydrophytic Vegetation Present? Yes No			

riyuropriyiic vegetation Fresent?	103					
Hydric Soil Present?	Yes 💽	No 💿	Is the Sampled Area			
Wetland Hydrology Present?	Yes 🜘	No 💿	within a Wetland?	Yes 💿	No 🔿	
Remarks:			÷			

VEGETATION

	Absolute	Dominant		Dominance Test wor	rksheet			
Tree Stratum (Use scientific names.) 1.	% Cover	Species?	Status	Number of Dominant That Are OBL, FACW			((A)
2.				-		1	ľ	`´
3.				 Total Number of Dom Species Across All St 		1	((B)
4.		·			iala.	1	((0)
				Percent of Dominant		-		
Sapling/Shrub Stratum Total Cove	r: %			That Are OBL, FACW	, or FAC	C: 100.	0% ((A/B)
1.				Prevalence Index wo	orkshee	et:		
2.				Total % Cover of:		Multiply	by:	
3.				OBL species	1	x 1 =	1	
4.				FACW species	65	x 2 =	130	
5.				FAC species		x 3 =	0	
Total Cover	r: %			FACU species		x 4 =	0	
Herb Stratum				UPL species		x 5 =	0	
1.Polypogon monspeliensis	65	Yes	FACW	Column Totals:	66	(A)	131	(B)
² .Juncus xiphioides	1	No	OBL					
3.				Prevalence Inde			1.98	
4.				Hydrophytic Vegetat				
5.				X Dominance Test				
6.				Prevalence Index				
7.				Morphological Ad data in Remar				ng
8.							,	、
Total Cover				Problematic Hydr	opnytic	vegetation' (⊏xpiain))
Woody Vine Stratum	00 /0			1				
1				¹ Indicators of hydric s be present.	soil and	wetland hyd	rology n	nust
2								
Total Cover	r: %			Hydrophytic Vegetation				
	r of Biotic C		%	Present? Y	'es 💿	No 🔿		
Remarks: Location is on margin of drainage below	the pond.	Area is de	ominated b	y Polypogon monspe	liensis	. Surroundir	ig gras	slands
are dominated by upland grasses.								

SOIL

Profile Desc	cription: (Describe to	o the dep	oth needed to docume	nt the	indicator	or confirr	m the absence of indicators.)
Depth	Matrix		Redox Features				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture ³ Remarks
0-12	10YR3/2	80	7.5YR5/6	20	С	Μ	clay loam
¹ Type: C=C ³ Soil Texture Hydric Soil II Histosol Histic E Black Hi Hydroge Stratified 1 cm Mu Deplete Thick Da Sandy M Sandy C Restrictive Type: Depth (in	oncentration, D=Deple es: Clay, Silty Clay, Sa ndicators: (Applicable (A1) bipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) (LRR C) uck (A9) (LRR D) d Below Dark Surface ark Surface (A12) Aucky Mineral (S1) Bleyed Matrix (S4) Layer (if present):	etion, RM andy Clay to all LR	=Reduced Matrix. ² Li y, Loam, Sandy Clay Loa Sandy Redox (S Stripped Matrix Loamy Mucky Depleted Matri X Redox Dark Su Depleted Dark Redox Depress Vernal Pools (I	ocatio am, S tted.) 55) ((S6) Miner Matri x (F3) urface Surfa sions	al (F1) x (F2) (F6) ce (F7)		Construction Construction RC=Root Channel, M=Matrix. Construction am, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sand. Construction Indicators for Problematic Hydric Soils* Construction 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) 2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Material (TF2) Other (Explain in Remarks) ⁴ Indicators of hydrophytic vegetation and wetland hydrology must be present. Hydric Soil Present? Yes (No ()

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)
Primary Indicators (any one indicator is sufficient)		Water Marks (B1) (Riverine)
	Calt Cruct (D44)	
Surface Water (A1)	Salt Crust (B11)	Sediment Deposits (B2) (Riverine)
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Riverine)
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)
X Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)
X Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Living Roo	ots (C3) Thin Muck Surface (C7)
Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aerial Imagery (C9)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	_	FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes O No 💿	Depth (inches):	
Water Table Present? Yes O No 💿	Depth (inches):	
Saturation Present? Yes No (Depth (inches):	
(includes capillary fringe)		and Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspections),	if available:
Remarks:Site obviously ponds as evidenced by	deep cattle hoofprints and other surf	ace soil indicators. Water is flowing nearby
terreture. Site obviously poinds as evidenced by	deep eathe hoorprints and other surr	ace son indicators. Water is nowing nearby.

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Ang-3 Sulfur Springs Wetland	City/County:Contra Costa County	Sampling Date:8/10/12
Applicant/Owner: East Contra Costa Habitat Conservancy	State:CA	Sampling Point: A-3
Investigator(s): E. McDermott, H. Bartosh	Section, Township, Range: Section 7, T	IN, R1E
Landform (hillslope, terrace, etc.): hillslope	Local relief (concave, convex, none):con	vex Slope (%):10
Subregion (LRR): <u>C</u> - Mediterranean California Lat:420	0329 Northing Long:596739 E	asting Datum:UTMNAD83
Soil Map Unit Name: Altamont-Fontana Complex 30-50% slopes	s NWI c	lassification:none
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 💿 No 🔿 (If no, expla	in in Remarks.)
Are Vegetation Soil or Hydrology significantly	disturbed? Are "Normal Circumstan	nces" present? Yes 💿 No 🔿
Are Vegetation Soil or Hydrology naturally pro	oblematic? (If needed, explain any	answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing	sampling point locations, trans	ects, important features, etc.
Hydrophytic Vegetation Present? Yes 🕥 No 💿		
Hydric Soil Present? Yes No 💿	Is the Sampled Area	
Wetland Hydrology Present? Yes No Remarks:	within a Wetland? Yes	s 🔿 No 💽

VEGETATION

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
		Cover Species? Status		Number of Dominant Species	
1				That Are OBL, FACW, or FAC: 0 (A)	
2.				_ Total Number of Dominant	
3.				Species Across All Strata: 1 (B)	
4.					
Total Cove	r: %			 Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0 % (A/B) 	
Sapling/Shrub Stratum					
1.				Prevalence Index worksheet:	
2.				Total % Cover of: Multiply by:	
3.				OBL species x 1 = 0	
4.				FACW species $x 2 = 0$	
5.				FAC species $10 \times 3 = 30$	
Total Cove	r: %			FACU species $10 \times 4 = 40$	
Herb Stratum	,,,			UPL species $80 \times 5 = 400$	
¹ .Bromus diandrus	79	Yes	Not Listed	Column Totals: 100 (A) 470 (B))
2. Bromus hordeaceous	10	No	FACU		<i>'</i>
³ . <i>Centaurea solstitialis</i>	1	No	Not Listed	- Prevalence Index = B/A = 4.70	
4. Festuca perenne (Lolium perenne)	10	No	FAC	Hydrophytic Vegetation Indicators:	_
5.			·	Dominance Test is >50%	
6.			·	Prevalence Index is ≤3.0 ¹	
7.		·	·	Morphological Adaptations ¹ (Provide supporting	
8.				data in Remarks or on a separate sheet)	
Total Cover	r: 100%		·	Problematic Hydrophytic Vegetation ¹ (Explain)	
Woody Vine Stratum	100%				
1.				¹ Indicators of hydric soil and wetland hydrology must	
2.	_			- be present.	
Total Cover	r: %	-		– Hydrophytic	
% Bare Ground in Herb Stratum 0 % % Cover	r of Biotic C	Crust	%	Vegetation Present? Yes No	
Remarks: Vegetation at this location is typical of up	pland gras	sland in t	he vicinity.		
	Bruc			-	

SOIL

							m the absence of indicators	.,
Depth (inches)	Matrix Color (moist)	%	Color (moist)	x Features %	Type ¹	Loc ²	Texture ³	Remarks
/	10YR3/2							rionano
0-12	<u>104K3/2</u>						clay loam	
¹ Type: C=0	Concentration, D=Depl	etion, RM=I	Reduced Matrix.	² Location:	PL=Pore	Lining, F	RC=Root Channel, M=Matrix.	
		-				-	am, Silty Clay Loam, Silt Loai	m, Silt, Loamy Sand, San
Hydric Soil	Indicators: (Applicabl	e to all LRR	s, unless otherwise	e noted.)			Indicators for Problemat	ic Hydric Soils:
Histoso	ol (A1)		Sandy Redo	x (S5)			1 cm Muck (A9) (LR	RC)
Histic E	Epipedon (A2)		Stripped M	atrix (S6)			2 cm Muck (A10) (L	,
	Histic (A3)	N3) Loamy Mucky Mineral (F1)				Reduced Vertic (F18		
	jen Sulfide (A4)		Loamy Gle		(F2)		Red Parent Material	
	ed Layers (A5) (LRR C	;)	Depleted N	()			Other (Explain in Re	emarks)
	luck (A9) (LRR D)		Redox Darl	``	,			
	ed Below Dark Surface	e (A11)	Depleted D		. ,			
	Dark Surface (A12)		Redox Dep		8)			
	Mucky Mineral (S1)		Vernal Poo	ls (F9)			⁴ Indicators of hydrophyti	0
·	Gleyed Matrix (S4)						wetland hydrology mu	ust be present.
Restrictive	Layer (if present):							
Type:								
Depth (ii	nches):						Hydric Soil Present?	Yes 🔿 🛛 No 💿
Remarks: N	No evidence of hydr	ic soils are	e present.					
	-							

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)
Primary Indicators (any one indicator is sufficien	nt)	Water Marks (B1) (Riverine)
Surface Water (A1)	Salt Crust (B11)	Sediment Deposits (B2) (Riverine)
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Riverine)
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Livi	ing Roots (C3) Thin Muck Surface (C7)
Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed	Soils (C6) Saturation Visible on Aerial Imagery (C9)
Inundation Visible on Aerial Imagery (B7)	X Other (Explain in Remarks)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)		FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes O No	Depth (inches):	
Water Table Present? Yes O No	Depth (inches):	
Saturation Present? Yes O No	Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, monito	ring well, aerial photos, provious inspec	Wetland Hydrology Present? Yes O No O
Describe Recorded Data (Stream gauge, monito	oning well, aerial proces, previous inspec	suons), ii available.
Remarks:Site is slightly elevated and does	not appear to carry water or pond w	vater.
US Army Corps of Engineers		

WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Ang-3 Sulfur Springs Wetland	City/County:Contr	a Costa County	Sampling Date: 8/10/12			
Applicant/Owner: East Contra Costa Habitat Conservancy		State:CA	Sampling Point: A-4			
Investigator(s):E. McDermott, H. Bartosh	Section, Township, Range:Section 7, T1N, R1E					
Landform (hillslope, terrace, etc.): depression on hillslope	Local relief (conca	ave, convex, none): concave	Slope (%):2			
Subregion (LRR):C - Mediterranean California Lat:420	0334 Northing	Long:596732 Easting	g Datum: UTMNAD83			
Soil Map Unit Name: Altamont-Fontana Complex 30-50% slopes	S	NWI classifie	cation:none			
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?Yes 💿	No 🔿 (If no, explain in R	(emarks.)			
Are Vegetation Soil or Hydrology significantly	/ disturbed?	Are "Normal Circumstances"	present? Yes 💿 No 🔿			
Are Vegetation Soil or Hydrology naturally pro	oblematic?	(If needed, explain any answe	ers in Remarks.)			
SUMMARY OF FINDINGS - Attach site map showing	ı sampling poir	nt locations, transects	, important features, etc.			
Hydrophytic Vegetation Present? Yes No						

riyulophylic vegetation riesent?						
Hydric Soil Present?	Yes 💽	No 💿	Is the Sampled Area			
Wetland Hydrology Present?	Yes 💿	No 💿	within a Wetland?	Yes 💿	No 🔿	
Remarks:						

VEGETATION

	Absolute	Dominant		Dominance Test wo	rksheet:			
Tree Stratum (Use scientific names.) 1.	% Cover	Species?	Status	Number of Dominant That Are OBL, FACW				(A)
2.				Total Number of Dom	ainant			
3.				Species Across All S		3		(B)
4.				- Demonst of Deminorat	Creation			
Total Cove	r: %			 Percent of Dominant That Are OBL, FACW 		: 100.	0%	(A/B)
Sapling/Shrub Stratum						100.	0 /0	()
1				Prevalence Index w				
2.				Total % Cover of	<u>f:</u>	Multiply	by:	-
3.				OBL species	5	x 1 =	5	
4.				FACW species	25	x 2 =	50	
5.				FAC species		x 3 =	0	
Total Cover	r: %			FACU species		x 4 =	0	
Herb Stratum				UPL species		x 5 =	0	
1.Polypogon monspeliensis	20	Yes	FACW	Column Totals:	30	(A)	55	(B)
² .Thypha angustifolia	5	Yes	OBL	Davida da la d	D/4		1.00	
³ .Polypogon viridis	5	Yes	FACW	Prevalence Inde			1.83	
4.				Hydrophytic Vegeta				
5.				Dominance Test				
6.				Prevalence Index				
7.				Morphological Ad				ng
8.				data in Rema				、 、
Total Cover	30 %			Problematic Hyd	ropnytic	vegetation (Explain)
Woody Vine Stratum	50 10			1				
1				¹ Indicators of hydric be present.	soil and	wetland hyd	rology i	must
2								
Total Cover	r: %			Hydrophytic				
% Bare Ground in Herb Stratum 70 % % Cover	r of Biotic C	Crust	%	Vegetation Present?	Yes 💿	No 🔿		
Remarks: Location is in a depression that has a pipe	e leading t	to it. Bare	dirt is pres	sent at this location d	ue to ca	ttle trampli	ng.	

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)							
Depth	Matrix		Redox Features				
(inches)	Color (moist)	%	Color (moist)	%	% Type ¹	Loc ²	Texture ³ Remarks
0-12	10YR3/2	85	7.5YR5/6	15	С	M	clay loam
¹ Type: C=C ³ Soil Texture Hydric Soil Histoso Histic E Black H Hydrog	Concentration, D=Deple es: Clay, Silty Clay, Sa ndicators: (Applicable	etion, RM andy Cla	I=Reduced Matrix. y, Loam, Sandy Clay	² Locatic Loam, S a noted.) x (S5) atrix (S6) cky Mine yed Matr			clay loam
Deplete	uck (A9) (LRR D) ed Below Dark Surface lark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)	(A11)	X Redox Darl Depleted D X Redox Depleted D X Redox Depleted D Vernal Pool	ark Surfa ressions	ace (F7)		⁴ Indicators of hydrophytic vegetation and wetland hydrology must be present.
	Layer (if present):						
Type:							
Depth (inches):					Hydric Soil Present? Yes No		
Remarks: B	right mottles are pro	esent.					

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)		
Primary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine)			
Surface Water (A1)	Sediment Deposits (B2) (Riverine)			
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Riverine)		
Saturation (A3)	Aquatic Invertebrates (B13)	Trainage Patterns (B10)		
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)		
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Livir	ig Roots (C3) Thin Muck Surface (C7)		
X Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)		
X Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed S	Soils (C6) Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)		
X Water-Stained Leaves (B9)		FAC-Neutral Test (D5)		
Field Observations:				
Surface Water Present? Yes O No 💿	Depth (inches):			
Water Table Present? Yes O No 💿	Depth (inches):			
Saturation Present? Yes No (includes capillary fringe)				
Describe Recorded Data (stream gauge, monitorin	ng well, aerial photos, previous inspect	ions), if available:		
Remarks:Location is in a depressional feature	that has a pipe leading to it. Pond	ling in this location is visible on aerial imagery		
servered by Google Earth, dated 201				