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SUMMARY 

We randomly sampled the occurrence of Point Arena mountain beavers (PAMB) from the 

portion of their geographic range that was accessible (public lands plus private lands where 

permission was granted).  We surveyed 127 25-ha sample units (55.4% of accessible sample 

units) for PAMB burrows and estimated our probability of detecting burrows, if they were 

present, at  > 90% per visit.  Using this information, we estimated occupancy across the 

accessible portion of the range to be 26.2%.  This estimate can serve as a baseline for monitoring  

occupancy status.  Monitoring occupancy across the geographic range, combined with 

strategically selected locations where abundance and survival can be estimated non-invasively, 

may comprise a realistic and meaningful monitoring program for this taxon.  We also used the 

detection and non-detection locations to develop a habitat suitability model by relating both sets 

of locations to remotely sensed predictors.  We evaluated 53 a priori candidate habitat suitability 

models and the best-fitting model included: slope (-), terrain roughness index (-), and the density 

of rivers and streams (+).  This model predicted, for every sample unit within the PAMB’s 

geographic range, a value of probability of occurrence from zero to one.  We selected the 

probability value that best separated the sample units into suitable and non-suitable habitat, 

resulting in an estimate of 70.5 km
2
 of suitable habit, or approximately 40.4% of the original 
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geographic range.  Suitable habitat was most common in the middle (along the north-south axis) 

of the range.  A substantial number of suitable areas were predicted along the eastern margin of 

the range, suggesting that PAMBs may be discovered even farther east than we sampled.  New 

detections in the eastern portions of the range expanded the known geographic range to ~134 

km
2
 (~235 km

2
 if a 3-km buffer is added), moderating concerns about habitat loss, including that 

predicted by climate change.  The identification of high suitability areas allows management 

agencies to prioritize areas for PAMB conservation planning and to evaluate human impacts on 

habitat. 

INTRODUCTION 

The Point Arena mountain beaver (Aplodontia rufa nigra) (PAMB) is a burrow-dwelling rodent 

that is a federally endangered species occurring in a small geographic range in Mendocino 

County, California (Steele and Litman 1998, USFWS 2009) (Fig. 1).  Recovery goals specify 

minimum standards for the number and size of populations and for monitoring trends in 

populations and geographic range (Steele and Litman 1998, USFWS 2009), yet quantitative 

information about population status is limited to abundance estimates within or immediately 

adjacent to one of the few protected areas within the subspecies’ range: Manchester State Park 

(Northen and Fitts 1998, Zielinski et al. 2013a).  Mark-recapture methods were used to estimate 

population size for two locations within the park, and both had low but stable numbers from 

2006 – 2009 (Zielinski et al. 2013a).  At other historic locations throughout the subspecies’ 

range, recent searches found no evidence of their burrows (W. Zielinski unpubl. obs.).  However, 

whether new sites had been colonized over the same time period is unknown.  An objective and 

quantitative assessment of the population status of the PAMB throughout its range does not exist 
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despite it being a recovery criterion (USFWS 2009).  A comprehensive program is needed to 

assess the distribution of PAMBs, which would also serve as a baseline for monitoring. 

 

Monitoring an adequate number of locations as intensively as has been done in Manchester State 

Park to estimate population status is infeasible.  An alternative, used extensively in recent 

wildlife research, is occupancy estimation (MacKenzie et al. 2006).  This approach samples the 

presence (yes [“1”] versus absence [“0”]) of a species within sample units distributed randomly 

across the landscape and assumes that the frequency of occurrence is an index of population 

status.  The assumption that measures of occurrence collected across the range (distribution) 

reflect changes in abundance has received considerable support (Brown 1984, Gaston 1996, 

Stanley and Royle 2005, Noon et al. 2012).    Under some circumstances such as when budget is 

limited or when a species uncommonly detected, presence-absence surveys are more effective 

than measures of abundance at determining population status (Joseph et al. 2006).  Occupancy 

estimation is a well-established approach for species that are very expensive or difficult to count.  

The PAMB fits these characteristics and our primary objective was to use occupancy estimation 

to quantitatively measure the status of the PAMB population throughout its range.  Repeated 

sampling using the same approach can then serve as a population monitoring program, as 

demonstrated for other species (e.g., Karanth et al. 2011, Gould et al. 2012, Zielinski et al. 

2013b). 

 

Relating the detections and non-detections from occupancy surveys to associated environmental 

variables can also produce a habitat model that predicts a species’ occurrence and distribution 

(Elith and Leathwick 2009).  One of the values of species distribution modeling is that it can 
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produce a map that identifies the location, extent, and configuration of areas where the species is 

likely to occur.  To date, the only habitat modeling for the PAMB has been based on expert 

opinion (Fitts et al. 2002) or has focused on the habitat at den site locations (Zielinski et al. 

2010).  Both of these studies examined only a small proportion of the range, within Manchester 

State Park.  Therefore, our second objective was to develop a range-wide map of predicted 

habitat suitability.  This will allow managers to identify likely core areas and potential corridors 

that can be managed to prevent their degradation.  It also complements previous work that 

explored genetic substructure across the geographic range (Zielinski et al. 2012). 

METHODS 

Study Area 

We defined the PAMB geographic range as the potential range map in the species’ five-year 

status review (USFWS 2009).  The USFWS created it by adding a 3.2 km buffer around the 

perimeter of known locations (except the western boundary, which is the Pacific Ocean).  

Considering only the outermost points of the detection locations, the geographic range was ~85 

km
2
; adding the buffer expanded the range to ~174 km

2 
(Fig. 1) and this larger area served as the 

basis of our sampling frame.  This area includes a wide array of ecosystems, including coastal 

dunes and scrub, hardwood riparian forest, and coniferous forest.  The western portion of the 

range is coastal terrace with grassland, coastal scrub, and agricultural (mostly grazing) lands 

dissected by largely east-west flowing streams with shrub, forb, and hardwood tree riparian 

areas.  To the east, the coastal terrace transitions into foothills and mountains with nearly 

continuous forests comprised of Sitka spruce (Picea sitchensis), redwood (Sequoia 

sempervirens), tan oak (Notholithocarpus densiflorus) and Douglas-fir (Psuedotsuga menziesii).  

These forests are divided by high-gradient streams bordered with conifer as well as hardwood 
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(typically red alder [Alnus rubra]) cover.  The PAMB range, therefore, is characterized by low 

plains and hills generally lacking forest cover in the west, and mountainous and often steep 

forested terrain in the eastern portion (Fig. 1).  The climate is Mediterranean maritime with 

relatively cool summers and winters that are wet with only occasional freezing temperatures.  

Mean annual precipitation exceeds 1,000 mm, with most falling as rain from October to April. 

Occupancy Surveys 

Using a geographic information system (GIS), we overlaid a rectilinear grid of 25-ha cells on the 

entire 174 km
2
 geographic range that yielded a total of 780 complete, 25-ha cells.  Twenty-five 

hectares was chosen because it was viewed as being small enough to survey by 2 people in one-

half day and large enough for us to sample a sufficient number during our study to have a 

meaningful sample.  Our objective was to randomly sample from this population of cells to 

search for sign of mountain beavers, but not all portions of the range were available for 

sampling.  We had immediate access to 4.6 % of the range because it was in state or federal 

public ownership; the remainder of the range was on private land and thus required seeking 

permission.  To do so, we took advantage of a previous outreach effort conducted by the 

Redwood Coast Land Conservancy to locate private landowners willing to allow surveys for 

either PAMB or a species of federally listed butterfly.  In the spring of 2013, we recontacted 

landowners who had responded positively.  This process resulted in permission to survey on 

approximately 60 km
2
 of private land, or roughly 36.2% of the private land in the geographic 

range.  We refer to this combination of public and private parcels as the accessible land base and 

it comprised 39.1% of the geographic range.  The largest area of private land for which we 

received access was 2,984 ha owned by the Mendocino Redwood Company.  The balance of the 

accessible private land was 3,023 ha owned by multiple individuals and corporations. 
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To evaluate whether the accessible portion of the range represented a biased subset of the entire 

range (i.e., sample selection bias, sensu Phillips et al. [2009]) we compared the vegetation cover 

features of accessible and inaccessible areas.  To determine if our habitat model could be 

extrapolated from the accessible lands to the proportion of the land base that was inaccessible, we 

compared the vegetation cover features of both areas.  Using a dominant vegetation type coverage 

(CalVeg; http://www.fs.fed.us/r5/rsl/projects/classification/system.shtml), we determined that the 

proportions of the accessible and inaccessible land bases that were in each of 4 vegetation types were 

roughly equivalent (Table 1).  Thus, based on vegetation types at this scale of vegetation typing, we 

believe the accessible lands are representative of the inaccessible lands and that our habitat model 

could be applied to the entire geographic range.  As further confirmation, we also compared the 

range of values of the variables in our final habitat model (see Results), for the accessible and 

inaccessible portions of the range, to determine whether they were similar.  If so, it would suggest 

that  the variables useful at predicting PAMB occurrence were not substantially different between the 

available and unavailable cells. 

 

Not all 25-ha cells in the accessible land base were 100% accessible; those that had >80% of 

their area accessible were eligible for inclusion in our sample, resulting in a total of 193 potential 

25-ha sample units.  Initially we randomly selected 100 of these for inclusion in our sample.  

After this selection we learned of additional private lands (36, 25-ha units) that were accessible 

and from these we randomly selected 27 more units for a total of 127 sample units (Fig. 2).  Each 

of these sample units was surveyed for the presence of at least one PAMB burrow.  If this 

occurred, the survey for the unit was concluded.  When one burrow is found typically others are 
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also present (WJZ and FVS, pers. obs.), but we did not enumerate them for this study.  PAMB 

burrows are distinctive; they are much wider (~20 cm) than the burrows of the most common 

other burrowing mammal, the pocket gopher (Thomomys sp.).  Species of other burrowing 

mammals are either very rare (e.g., badger [Taxidea taxus]) or produce very different burrow 

openings (e.g., California ground squirrel [Otospermophilus beecheyi], striped skunk [Mephitis 

mephitis]).  Four field technicians were trained by an experienced researcher (FVS) to search for 

and verify the identity of PAMB burrows.  The technicians’ skill at burrow identification was 

periodically validated by their supervisor (FVS).  Each survey visit consisted of a team of 2 

technicians thoroughly searching up to 10 ha of each 25-ha unit in habitat conditions most likely 

to be inhabited by PAMB.  This strategy allowed us to maximize the number of sample units we 

could search and is similar to that used for occupancy surveys for other species (e.g., Karanth et 

al. 2011).  Previous work (e.g., Zielinski et al. 2012) suggested that we were most likely to 

discover PAMB burrows in areas where there was a mix of overhead cover and canopy openings, 

near streams or drainages, or where there were changes in topographic relief.  Thus, as the 

technicians planned their surveys each day, these areas were prioritized for searches when they 

occurred within a sample unit.  Using these constraints, the 2 technicians typically searched 

parallel paths 50-100 m apart in the sample unit.  Searching 10 ha took from 1-4 h, depending on 

the terrain and access.  The surveyors verified that they were searching within the specified 

sample unit by recording the search path on a Geographic Positioning System of one of the 2 

technicians.  Cells were sampled from May – August 2013. 

 

The team of surveyors visited sample units only once if during the first visit they discovered a 

PAMB burrow (i.e., confirmed occupancy).  If, however, they did not detect any burrows, a 
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second pair of technicians searched the unit on a subsequent day (usually within the same week).  

Thus, each sample unit had a “detection history” that was either: detection on the first occasion 

(notation “1”), detection on the second of 2 sample occasions (notation “01”), or no detection on 

either occasion (notation “00”).  These search replicates allowed us to estimate the probability of 

detection if present (MacKenzie et al. 2006), which is the proportion of sample occasions when 

the first survey resulted in no detection and the second survey resulted in a detection (“01”).  The 

information from these sample units provides an estimate of the number of occasions when 

surveys overlooked a burrow, and is used to adjust the naïve estimates of occupancy to account 

for uncertainty in detection.  Thus, our estimate of occupancy will be the proportion of sample 

units where a PAMB burrow was actually detected (the naïve occupancy estimate) plus the 

proportion of sample units where we estimated a burrow was overlooked (the adjusted 

occupancy estimate). 

 

Occupancy and probability of detection was modeled using the software PRESENCE (Ver. 6.2; 

Hines 2006).  We tested the fit of the data to 3 models.  The first assumed that sites were 

homogenous in respect to occupancy (i.e., “1 group”) and had a constant probability of detection 

for both the first and the second visit (“Constant p”).  The second assumed 1 group but that 

probability of detection differed between visits (“Survey-specific p”).  The third assumed that the 

sample units were heterogeneous, belonging to 2 or more groups in respect to occupancy and had 

a constant probability of detection.  The best model was determined by evaluating the relative 

model fit using Akaike’s Information Criteria (AIC) and AIC weights (Burnham and Anderson 

2002). 
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Habitat Modeling 

We suspected that informative landscape-scale variables would come from one or more of the 

following categories: anthropogenic (e.g., roads), topographic, hydrologic, and biotic (classified 

remotely sensed vegetation-related variables) and edaphic.  Various pre-existing sources for 

variables within each category were investigated to find those that: (a) had a link to the ecology 

of mountain beavers, (b) were available for the entire geographic range, and (c) were variable 

enough across the range to be useful at distinguishing detection from non-detection locations.  

The list of variables that remained after this filtering was reduced further by eliminating one of a 

pair that were highly correlated (r >0.80).  The final set of 10 predictor variables (Table 2) were 

down-sampled to match the 25-ha sample unit and used to create a collection of a priori 

univariate and multivariate models (Appendix I) chosen to represent alternative views of 

environmental factors that might affect PAMB distribution (Burnham and Anderson 2002). 

 

We used non-parametric logistic regression, a subset of Generalized Additive Models, with loess 

smoothing functions (Cleveland 1985) to compare models representing the relationship between 

sample units with a PAMB detection and those without.  We evaluated each model’s fit to the 

data using the bias-corrected Akaike’s Information Criteria with correction (AICc) (Akaike 

1973).  We calculated relative importance values for individual variables by determining the gain 

in AICc value when each variable was removed from the final model.  We evaluated model 

discrimination by integrating the area under the receiver operating characteristic curve (Area 

Under the Curve [AUC]; Fielding and Bell 1997).  Random predictions result in an AUC value 

of 0.5, whereas a perfect prediction assumes the maximum value of 1.0.  We performed cross 

validation of the best model to determine how robust it was to perturbations of the data used to 
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develop it.  Cross validation was done by removing a random 10% subset of the developmental 

data, training the model on the remaining 90% of the data, then classifying the with-held 10%.  

This process was repeated 10 times with replacement.  The best-fitting model resulted in a 

prediction of habitat suitability for each sample unit that ranged from 0 to 1. 

 

To distinguish suitable from unsuitable habitat along the continuous range of habitat suitability 

values we chose a threshold value that optimized Cohen’s Kappa value (Cohen 1960).  We 

evaluated Kappa at 26 alternative cut-off points for classifying detection and non-detection units, 

at 0.01 increments, starting at predicted values of 0.20 and continuing to 0.45.  The optimal cut-

off was the point above which the Kappa value did not increase.  Sample units with values above 

this value were classified as suitable, below this value they were classified as unsuitable.  We 

also evaluated the proportion of the range that is suitable, the proportion of each of the primary 

watersheds (as originally identified in Zielinski et al. 2012), and the proportion of the range that 

is north and south of the Garcia River, a putative geographic feature that has influenced genetic 

substructure in the PAMB (Zielinski et al. 2012). 

RESULTS 

Occupancy Surveys 

A total of 127 sample units were surveyed.  The detection of mountain beaver burrows at 33 of 

these resulted in a naïve estimate of occupancy of 0.259 (Fig. 3).  Thirty surveys detected 

evidence of burrows on the first visit, the balance of positive detections (n = 3) were confirmed 

on the second visit after failing to detect a burrow on the first visit.  An average (SD) of 1.0 (0.8) 

hours was spent searching sample units before a detection occurred and 1.6 (0.9) hours in sample 

units where no burrow was detected.   The “1-group, constant p” model best fit the data (AIC wt 
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= 0.7311; Table 3) resulting in an adjusted estimate of occupancy of 0.262 (SE = 0.039; 95% CI 

= 0.1927 – 0.3466).  The per-visit probability of detection (p) was 0.90 (SE = 0.061).  When this 

is compounded by the maximum number of visits possible (n = 2), the total probability of 

detection for the survey protocol was very high (1 – [1- 0.90]
2
 = 0.99), suggesting high 

confidence in detecting evidence of mountain beavers when it was present. 

 

We detected PAMBs in some sample units that were within the 3-km buffer beyond the original 

distribution of PAMB locations provided by the USFWS (USWFS 2009).  The original range 

was calculated as ~85 km
2
 by enclosing the marginal locations in the north, east, and south and 

extending the range to the coastline in the west.  Our new marginal locations, especially in the 

east and the north, expanded the geographic range from ~85 km
2
 to ~134 km

2
 (Fig. 3).  

Habitat Modeling 

Of the 53 a priori models evaluated, the top-ranked model [SLOPE + TRI + RIVSTREAM] 

accounted for a dominant proportion of the Akaike weight (0.85) (Table 4).  The next 2 highest 

ranking models had weights that were far less (0.098 and 0.036, respectively, Table 4) but also 

included 2 or 3 of the variables included in the top model (Table 4).  The variables in the top 3 

models included variables from the topographic and hydrologic groups (SLOPE, ASPECT, TRI, 

and RIVSTREAM).  The top model had an AUC value of 0.837, meaning that using this model a 

randomly selected detection location will have a larger predicted habitat value than a randomly 

selected absence location 83.7% of the time.  RIVSTREAM was the most influential variable in 

the top model.  When it was removed from the top model, the AICc value increased by 18.8 

points, compared to removing SLOPE and TRI which increased the AICc value by 4.3 and 9.0 

points, respectively. 
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Detections occurred in sample units that, on average, were on more level slopes, with lower 

terrain roughness indices, and higher densities of rivers and streams (Fig. 4).  This model 

provided good separation between the predicted values of detections and non-detections (Fig. 

5A), with the maximum predicted value of 0.95 for a site with a detection.  This model was also 

very robust to cross validation, producing equally good separation between predicted values of 

detections and non-detections (Fig. 5B) and an AUC value of 0.85.  Cohen’s Kappa for the top 

model achieved its maximum value at a cut-off of 0.34.  This resulted in a total of 281 full plus 

partial sample units that exceeded this value (Fig. 6A, B).  Recognizing that sample units 

predicted to be habitat will contain some small areas that are not suitability habitat for PAMB 

while those units predicted to not contain habitat could have small areas that are habitat, we can 

assume that our model averages these and then predict that the total suitable habitat for the 

PAMB is about 70.5 km
2
 or 40.4% of the ~174 km

2
 geographic range as originally estimated 

(USFWS 2009).  Using the same approach, all watersheds in the range had at least 25% of their 

area in suitable habitat; the Moat Creek watershed had the highest at 47% (Table 5).  The areas 

north and south of the Garcia River, which previous research suggested influenced historical 

gene flow, were 28.9% and 39.3%, respectively (Table 5). 

 

Comparing the range of values for each of the predictors, in the accessible and inaccessible 

portions of the geographic range, allows us to evaluate our assumption that these 2 areas are 

equivalent in respect to features associated with PAMB occurrence.  The percent of units in the 

inaccessible areas that had values that exceeded the minimum or maximum for SLOPE, TRI and 

RIVSTREAM (the 3 variables in the best model) were 0.5%, 0.0% and 0.0%, respectively 
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(unpubl. results).  This suggests that the inaccessible portions of the range resembled the 

accessible portions that were sampled, in respect to the range of values for the key predictors in 

the model. 

DISCUSSION 

Point Arena mountain beavers were estimated to occur at 26.2% of the sample units we 

surveyed.  Our survey method had a high probability of detecting evidence of the PAMB when it 

was present (> 90%), leading to confidence in the precision of our estimates of occupancy.  Ours 

is the first estimate of range-wide occupancy produced for this taxon and represents a potential 

baseline for quantitatively monitoring the subspecies’ distribution (Fig. 7).  This would most 

efficiently be accomplished by repeatedly surveying the same sample units we sampled using 

multiple-season occupancy models (MacKenzie et al. 2006) to estimate trends in occupancy over 

time.  A similar program has been in place for approximately 10 years to monitor the southern 

Sierra fisher (Pekania pennanti) population (Zielinski et al. 2013b).  Because the USFWS is 

responsible for a status review every 5 years, this is a reasonable resample frequency.  Not only 

would a program of this nature allow responsible agencies to monitor occupancy, but it would 

also provide opportunities to identify where sample units transition from occupied to non-

occupied (“extinction”) and vice versa (“colonization”) (MacKenzie et al. 2003), providing 

insights about metapopulation dynamics and  turnover rates (e.g., Royle and Kéry 2007). 

 

Ours was a 55.4% sample,  when 127 sample units were drawn from 229 units accessible for 

surveying.  The sample included 88.2% private lands and 11.8% public lands, which was fairly 

representative of the distribution of these ownerships in the original geographic range (95.3% 

and 4.6%, respectively).  We do not, however, suggest that our population occupancy model 
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applies to the entire range, at least for the purpose of monitoring.  Although the lands that were 

accessible included cover types that were representative of the lands that were inaccessible (see 

Table 1), this extrapolation is not necessary for the purposes of establishing a monitoring 

program.  All that is necessary is to resample the same 127 sample units on each monitoring 

occasion; this will produce an unbiased estimate of the distribution on the accessible lands.  The 

occupancy estimate, reevaluated every 5 years, would be defined as an “estimate of population 

status for the accessible portion of the geographic range.” 

 

Currently, recovery and delisting of the PAMB is based on demonstrating the persistence of a 

specified number of “populations”, each with a specified number of individuals occurring over a 

minimum area, for a specified period of time (Steele and Litman 1998: iii - iv).  Data with this 

resolution has not been gathered to date and it will continue to be problematic due to the 

logistical and economic challenges associated with delimiting a population and estimating its 

size.  We encourage lead agencies to consider a new view for recovery; that of evaluating a 

combination of: (1) occupancy rates across the accessible portion of the range (such as we have 

proposed here) – provided that there are no substantial changes to accessibility     combined with 

(2) estimates of abundance and survival at several representative locations throughout the range.  

The first component would be implemented by repeating the occupancy surveys described here.  

The second would be implemented by continuing the monitoring of abundance and survival at 

the 2 sites in Manchester State Park (Zielinski et al. 2013a) and by adding a few additional sites 

across the range with similar intensive demographic monitoring. 
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A recovery plan should also consider thresholds at which further management is necessary based 

on the results of the monitoring program.  We are not aware of a threshold that has been 

proposed for the PAMB.  Lack of forethought on this topic has been a source of criticism of 

species monitoring plans (Lindenmayer et al. 2013).  We do not have an answer to this question, 

but encourage the state and federal authorities to initiate a discussion on this topic.  Ideally, this 

program would specify one or more thresholds and actions to be taken when monitoring results 

indicate significant increases or decreases in occupancy, demographic performance, or both. 

 

The best-fitting habitat model was comprised entirely of topographic and hydrologic variables: 

SLOPE, TRI, and RIVSTREAM.  In this mountainous and highly dissected landscape, the places 

where PAMBs were detected had more gentle slopes, reduced terrain roughness, and higher 

densities of rivers and streams than the places where PAMBs were not detected.  These places 

were influenced by the interactive forces of topography and hydrology that most likely resulted 

in conditions with wetter soils and well developed, multi-layered vegetation.  Predictor variables 

related to soils or to vegetation (e.g., greenness, bulk density) were not in the best-fitting models.  

This doesn’t mean that they are not important to the biology of PAMBs, which require available 

water and succulent vegetation to balance water demands (Nungesser and Pfeiffer 1965) and 

soils with appropriate composition essential for burrow construction (Hacker and Coblentz 

1993).  The topographic variables in the top model probably performed well because they are 

good predictors of the plants and soil conditions that are life requisites of PAMBs.  Abundant 

and diverse vegetation occurs on gentle slopes and even terrain in locations where moisture 

accumulates, producing soils that are presumably soft enough for burrow construction.  The 

association with rivers and streams is likely related to the availability of open water, a necessity 
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for PAMB water balance and a major influence on the distribution of wetland plants and soils 

used for food and burrow construction, respectively.  Interestingly, when values for 2 soil 

variables - soil bulk density and percent clay - are examined at sample units that are arranged 

from highest to lowest probability of occurrence, the values for both variables are lowest where 

the probability of occurrence is highest (W. Zielinski, unpubl. data).  This suggests that despite 

their exclusion from the top model they may be linked to PAMB occurrence and that sample 

units with soils that have lower bulk densities and percent clay may be more amenable to 

burrowing.  Finally, it is important to note that in modeling exercises of this nature the top-

ranking model simply represents the best performing model supported by the data.  The variables 

included in this model do not represent the sum total of factors influencing PAMB.  The best 

model combines predictive ability (reduced deviance) as well as parsimony (i.e., a penalty is 

incurred for each of the model’s estimated parameters).  It does provide good predictive ability, 

but managing only for the variables in the model would be a mistake because the model is an 

abstraction of habitat factors influencing PAMBs (see Dunk and Hawley 2009). 

 

The habitat model helps us understand features associated with PAMB presence, but it also can 

serve as a tool for monitoring and managing habitat.  Typically, a model of this nature could be 

used for monitoring habitat suitability by updating the predictor values in the top model every 

few years and generating a new map of predicted suitability (e.g., Tuanmu et al. 2011).  

However, the best model includes only topographic and hydrologic variables, which are unlikely 

to change except over long time periods.  Although areas with high predicted suitability may not 

change their topographic features or hydrologic characteristics, they will be places where 

suitable vegetation and soils are likely to occur and where land disturbing activities will likely 
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have more effects on the PAMB population than places when the model predicts lower 

suitability. 

 

The map of predicted probabilities also can serve strategic conservation planning needs by 

identifying areas that were not surveyed, but where predicted suitability was high and PAMBs 

are likely (Fig. 6).  These locations identify where conservation interests could achieve strategic 

conservation goals by seeking to protect them from degradation or develop conservation 

agreements.  Particularly promising areas for this purpose are in the central portion of the range 

(on the north-south axis), the southern half of the range, and the coastal portions of the northern 

half of the range (Fig. 6). 

 

Our work is an example of how surveys conducted on one portion of the geographic range – the 

accessible areas – can result in predictions that can benefit the conservation of a taxon on the 

unsurveyed portions of the range.  Endangered species often inhabit private lands where access is 

prohibited.  Remotely sensed variables are available across all ownerships permitting the 

development of GIS-based models that can predict species occurrences even where surveys are 

not allowed.  Our research illustrates the conservation benefits of using remotely sensed 

variables for developing models for endangered species across mixed ownership landscapes 

(e.g., Wilson et al. 2013). 

 

When the PAMB was listed as endangered, the primary threat to the subspecies was habitat loss.  

The most recent status review (USFWS 2009) notes that “the loss and modification of suitable 

habitat continues to be the primary threat to Point Arena mountain beavers, especially on private 



18 

 

lands.”  Our habitat model cannot be used to monitor habitat loss related to changes in vegetative 

conditions.  The classification schemes of available GIS vegetation layers were typically too 

coarse to be useful.  For example, some considered all the cover types in the eastern portion of 

the range as “forest”, other layers only classified the forested lands with high resolution leaving 

the mixed use lands in the western portion unclassified.  Most layers were incapable of 

identifying small patches of riparian vegetation which may be particularly important to PAMB.  

Key to improving habitat mapping in the future will be the improvement in remotely sensed 

vegetation information, which may require creating new habitat suitability models.  Soils maps 

were also not particularly helpful.  Although recently updated for Mendocino County (USDA 

Natural Resources Conservation Service, 2012), soils maps had large unclassified areas.  

Promising variables that may be related to the ease of burrowing (e.g., “soil preparation – 

surface”) did not have sufficient variation across the range to be useful in discriminating 

detection from non-detection locations.  If development and disturbance on private land 

continues to be a primary threat, the monitoring of habitat loss ˗ on a parcel-by-parcel basis ˗ will 

be necessary, as is currently done as part of the environmental review process conducted by the 

USFWS (USFWS 2009:17). 

 

Suitable and unsuitable habitat was distinguished based on a threshold predicted value.  Above 

that value, sample units were designated as habitat, while below that value they were designated 

non-habitat.  Applying this threshold resulted in 281 full or partial sample units (or 

approximately 70.5 km
2
) designated as “suitable”.  This represents 40.4% of the range, 

substantially higher than a recent estimate of 10.1% (K. Wear, USFWS, cited in USFWS 2009).  

The difference is probably due primarily to the latter estimate being based on expert opinion 
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about suitable vegetation types while ours was based on predicted suitability derived from an 

empirical statistical model.  Additionally, our estimate was based on the optimal choice of a cut-

point of predicted probability (i.e., 0.34); a choice above or below this value would lead to 

different values for the proportion of the range comprised of suitable habitat.  Finally, all habitat 

classification systems assume assessment areas     pixels, polygons or sample units     are 

categorized as either suitable or unsuitable in their entirety.  As this is unlikely to be the case, our 

25-ha sample units may result in higher estimates of suitability than if smaller units were 

considered. 

 

Resampling the remotely-sensed predictor layers can potentially influence the habitat model 

results.  The predictor variables used for this study were those available from remotely sensed 

data (see Table 2).  The data vary in their ability to represent phenomenon on the earth based on 

their resolution and the complexity of the area within each cell or pixel (Cracknell, 1998).  We 

“down sampled” existing GIS layers to match the 25-ha sample unit size by taking the mean 

value of all the cells within each sample unit.  Increasing the size of the cells for the predictors 

has reduced model accuracy in previous studies (Gottschalk et al. 2011).  Because there are 

inherent inaccuracies in all spatial data, increasing the cell size has actually increased model 

performance in other studies because the inaccuracies have been averaged out (Guisan 2007).  

Our study was specifically designed for long-term monitoring of PAMB with limited time and 

resources for field sampling.  With additional resources, data could be collected that would allow 

a higher resolution model of PAMB habitat to be created. 
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Our work, based on burrow evidence, resulted in an expansion of the known range of the PAMB.  

Our survey area included the portion of the range added by the USFWS where previous locations 

had not been reported.  Our sampling in this area resulted in the detection of 8 new locations 

(Fig. 3) that increases the range with documented presence to ~134 km
2
.  We suggest this 

become the basis for an updated geographic range map.  If the USFWS adds a 3-km buffer to 

this new area, the area of the species range increases from the current ~174 km
2
 to ~235 km

2.
  

We do not know if the range has actually expanded since the original listing or is the result of 

expanded survey effort.  Suitable areas predicted by our habitat map along the eastern margin of 

the current range (Fig. 6A, B) suggests that the actual range may extend even further east, 

northeast and southeast of the expanded range. 

 

Shotwell (1958) and the USFWS (2009) suggest the present range size reflects contractions that 

resulted from drying due to regional climate as well as vegetation and topographic changes since 

the Eocene.  The increase in range size revealed by our sampling provides some reassurance that 

this pattern of contraction has not progressed significantly, at least in the past few decades.  

However, we are aware that recent changes may be of a different order of magnitude than the 

more significant changes in range that are influenced by changes in climate that occur at much 

longer time frames.  A larger known range, compared to when the taxon was listed, may 

ameliorate some of the concern about the impacts of anthropogenic habitat loss.  Likewise, the 

larger known range and burrow system numbers may ease concerns regarding the potential 

effects of climate change such as increased drought, more variable precipitation, and sea level 

rise along the coast (USFWS 2009). 
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Table 1.  The proportion of 4 cover types, classified using the CalVeg vegetation classification 

system (http://www.fs.fed.us/r5/rsl/projects/classification/system.shtml) and identified by 

accessibility within the PAMB geographic range. 

 

Vegetation 

Type 

 

Accessible 

land area 

(4,908 ha) 

 

Inaccessible 

land area 

(12,110 ha) 

 

  

Forest 

 

0.60 0.60 

 Grassforbshrub   0.30 0.27 

 Non-habitat   0.05 0.09 

 Riparian 0.05 0.04 
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Table 2.  Final set of predictor variables used to model range-wide PAMB habitat.  Definitions apply to the assessment of the 

variable averaged for each 25-ha sample unit. 

 

Variable 

 

Abbreviation 

 

Definition 

Greenness Index GREENNESS Calculated using a tasseled-cap transformation and 7 bands from 

Landsat 7 ETM+ (Huang et al. 2002). The greenness index 

produces cell values where higher numbers indicate an increased 

presence of chlorophyll and healthy vegetation. Values for each 

sample unit were extracted from the greenness raster using 

BlueSpray (BlueSpray Ver. A0.0, 2014.) and represent the mean 

value of all the pixels within each sample unit. 

 

Wetness Index WETNESS Calculated using a tasseled-cap transformation and 7 bands from 

Landsat 7 ETM+ (Huang et al. 2002). The wetness index portrays 

vegetation moisture. This index is sensitive to soil and plant 

moisture and vegetation structure. Values for each sample unit were 

extracted from the wetness raster using BlueSpray (BlueSpray Ver. 

A0.0, 2014) and represent the mean value of all the pixels within 

each sample unit. 

 

Aspect ASPECT Calculated using the Aspect tool (Spatial Analyst license) in 

ArcGIS v.10.1 with a 1-arc second DEM downloaded from the 

USGS National Elevation Dataset (NED, 

http://ned.usgs.gov/downloads.asp, downloaded 16 November 

2013), then cosine transformed to represent “northness”. Values for 

each sample unit were extracted from the aspect raster using 

BlueSpray (BlueSpray Ver. A0.0, 2014) and represent the mean 

“northness” value of all the pixels within each sample unit. 
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Slope SLOPE Calculated using the Slope tool (Spatial Analyst license) in ArcGIS 

v.10.1 with a 1-arc second DEM downloaded from the USGS 

National Elevation Dataset (NED) on 13 November 2013. Values 

represent degree of slope. Values for each sample unit were 

extracted from the slope raster using BlueSpray (BlueSpray Ver. 

A0.0, 2014) and represent the mean value of all the pixels within 

each sample unit. 

 

Terrain Roughness Index TRI Calculated with the NED DEM by looking at an 8-cell 

neighborhood for each 30m- pixel. Specifically, it calculates the 

difference of the cell value and the mean of the 8-cell 

neighborhood. The resulting raster layer can be reclassified based 

on the TRI categories defined by Riley et al. (1999), ranging from 

flat to extremely rugged (values from 0-1). Values for each sample 

unit were extracted from the TRI raster using BlueSpray 

(BlueSpray Ver. A0.0, 2014) and represent the mean value of all 

the pixels within each sample unit. 

 

Relative Position Index RPI Calculated with the NED DEM by examining each pixel's relative 

position with respect to its local neighborhood (Jenness 2004). 

Values range from 0-1, indicating low to high ruggedness. Values 

for each sample unit were extracted from the RPI raster using 

BlueSpray (BlueSpray, Ver. A0.0, 2014) and represent the mean 

value of all the pixels within each sample unit. 

 

Secondary roads 

 

 

 

 

 

 

 

SROADS 

 

 

 

 

 

 

 

Downloaded from USGS, The National Map Program 

(http://nationalmap.gov/viewer.html). Includes networks of local 

neighborhood streets as well as major roadways in the study area. 

Includes primarily public paved and unpaved roads 

(http://www.census.gov/geo/maps-data/data/tiger-line.html; 

downloaded 16 November 2013). Values for each sample unit 

represent length of secondary roads within each unit. This includes 

all paved and unpaved public roads.  Ground-checking revealed that 
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Rivers and streams 

 

 

 

Bulk Density 

 

 

 

 

 

 

 

 

Percent clay 

 

 

 

RIVSTREAM 

 

 

 

BD13 

 

 

 

 

 

 

 

 

PERCENT CLAY 

it also includes the majority of unpaved roads on private land. 

 

 

Downloaded from USGS, The National Map Program. Values for 

each sample unit represent length of rivers and streams within each 

unit. Includes intermittent streams. 

 

Downloaded from the USDA Web Soil Survey 

(http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). Bulk 

density describes the oven-dry weight of soil material less than 2 

mm in size per unit volume of soil at water tension of 13 bars. The 

ratings are measured in units of grams per cubic centimeter. Values 

for each sample unit were extracted from the bulk density raster 

using BlueSpray (BlueSpray, Ver. A0.0, 2014) and represent the 

mean value of all the pixels within each sample unit. 

 

Downloaded from the USDA Web Soil Survey.  This variable 

describes the percent of soil content containing clay particles. 

Values for each sample unit were extracted from the percent clay 

raster using BlueSpray (BlueSpray, Ver. A0.0, 2014) and represent 

the mean value of all the pixels within each sample unit. 
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Table 3.  Top ranked models to estimate occupancy for the PAMB from sampling across their 

geographic range in Mendocino, County California.  The models were derived from data 

collected from May - August, 2013.  Akaike’s Information Criterion (AIC), change in AIC 

(ΔAIC), AIC weight (w,), likelihood, and number of parameters for each model are identified. 

 

Model 

 

AICc 

 

ΔAIC 

 

wi 

 

Model likelihood Parameters 

 

1-group, constant p 

 

169.62 

 

0.0 

 

0.731 

 

1.00 

 

2 

1-group, survey-specific p 171.62 2.00 0.269 0.37 3 

2-group, constant p 173.62 4.00 0.090 0.135 4 
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Table 4.  Top-ranked habitat models for the PAMB from sampling across their geographic range 

in Mendocino, County California derived from data collected from May - August, 2013.  

Akaike’s Information Criterion (AICc), AIC weight (w,), cumulative weight, and difference in 

weight between top-ranked and listed model (wti) are presented. 

 

Model 
 

 

 

AICc 

 

AIC wt (wi) 

 

Cum. Wt. 

 

wthighestwti 

      

 

SLOPE + TRI + RIVSTREAM 

 

 

 

92.79 

 

0.848 

 

0.848 

 

1.000 

 

TRI + RIVSTREAM 

 

 99.10 0.098 0.946 8.64 

ASPECT + SLOPE + TRI + 

RIVSTREAM 

 99.12 0.036 0.981 23.70 
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Table 5.  Percent suitable habitat (using the 0.34 predicted suitability cut point), and area of 

suitable habitat,  in the 9 major watersheds identified in Zielinski et al. (2012) and north and 

south of the Garcia River, a feature associated with major genetic differentiation in PAMB 

(Zielinski et al. 2012). 

 

Watershed 

 

 

 

 

Percent 

suitable 

habitat 

 

Area of suitable 

habitat (ha) 

    

 

Mallo Pass Creek 

 

 

 

28.9 

 

1597.7 

    

Alder Owl Creek 

 

Alder Creek 

 37.5 

 

27.5 

68.4 

 

554.0 

    

Brush Creek  31.0 898.8 

    

Lagoon Creek  29.2 243.4 

    

Garcia River  41.7 1376.5 

    

Garcia Hathaway Creek  38.4 494.7 

 

Point Arena Creek  39.5 381.9 

    

Moat Creek  47.0 750.6 

    

North of Garcia River  28.9 4075.0 

    

South of Garcia River  39.3 2289.0 
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Appendix I.  Candidate models of environmental factors used to distinguish between sample units with PAMB detections and those 

without detections (see Table 2 for definitions of variable abbreviations). 

 

Biological Models 

     

       1 GREENNESS 

     2 WETNESS 

     3 GREENNESS WETNESS 

    

       

 

Topographic Models 

     

       4 TRI      

5 SLOPE      

6 RIVSTREAM      

7 ASPECT TRI 

    8 SLOPE TRI 

    9 ASPECT RPI 

    10 SLOPE RPI 

    11 ASPECT SLOPE 

    12 TRI RIVSTREAM     

13 SLOPE RIVSTREAM     

14 ASPECT SLOPE TRI 

   15 ASPECT SLOPE RPI 

   16 ASPECT  SLOPE TRI RPI 

  17 ASPECT  SLOPE TRI RPI RIVSTREAM 

 18 ASPECT  SLOPE TRI RPI SROADS 

 19 ASPECT TRI RIVSTREAM 

   20 SLOPE TRI RIVSTREAM 

   21 ASPECT RPI RIVSTREAM 

   22 SLOPE RPI RIVSTREAM 
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23 ASPECT SLOPE RIVSTREAM 

   24 ASPECT SLOPE TRI RIVSTREAM 

  25 ASPECT SLOPE RPI RIVSTREAM 

  26 ASPECT  SLOPE SROADS 

   27 ASPECT  SLOPE SROADS RIVSTREAM 

  28 ASPECT  TRI RPI RIVSTREAM 

  29 SLOPE TRI RPI RIVSTREAM 

  

       

 

Soil Models 

     

       30 CLAY 

     31 CLAY BD13 

    32 BD13 

     

       

 

Multiple Class 

Models 

            

33 WETNESS GREENNESS TRI 

   34 WETNESS GREENNESS TRI RIVSTREAM 

  35 WETNESS GREENNESS TRI RIVSTREAM SROADS 

 36 WETNESS SLOPE RIVSTREAM 

   37 GREENNESS SLOPE RIVSTREAM 

   38 WETNESS ASPECT TRI 

   39 WETNESS ASPECT TRI RIVSTREAM 

  40 WETNESS ASPECT TRI RIVSTREAM SROADS 

 41 WETNESS ASPECT RPI 

   42 WETNESS ASPECT RPI RIVSTREAM 

  43 WETNESS GREENNESS TRI BD13 

  44 WETNESS GREENNESS TRI BD13 RIVSTREAM 

 45 WETNESS GREENNESS TRI BD13 RIVSTREAM SROADS 

46 WETNESS SLOPE BD13 RIVSTREAM 
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47 GREENNESS SLOPE BD13 RIVSTREAM 

  48 WETNESS ASPECT TRI BD13 

  49 WETNESS ASPECT TRI BD13 RIVSTREAM 

 50 WETNESS ASPECT TRI BD13 RIVSTREAM SROADS 

51 WETNESS ASPECT RPI BD13 

  52 WETNESS ASPECT RPI BD13 RIVSTREAM 

 53 WETNESS ASPECT RPI BD13 RIVSTREAM SROADS 
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Figure 1.  Distribution of the known sites (white dots) identified in the 5-year status review for the PAMB 

(USFWS 2009).  The innermost line encircling the sites smooths the minimum convex polygon of the 

geographic range based on site records (~ 85 km
2
).  The outermost line represents a 3-km buffer and 

encompasses an area (~ 174 km
2
) the USFWS (2009) designates as the historic distribution (USFWS 2009).  

The background is aerial imagery from the USDA National Agriculture Imagery Program (NAIP) illustrating 

the largely forested eastern portion of the range (darker areas) and the western portion that includes more 

grassland, agriculture, and pasture (lighter areas).  
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Figure 2.  The 193, 25-ha grid cells (white squares) from which 127 sample units (squares with bold perimeters) 

were randomly selected to survey for PAMBs in the summer of 2013.  Parcels accessible for sampling are in 

white, inaccessible parcels areas in gray.  
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Figure 3.  The 127 sample units used to survey for PAMBS during the summer of 2013.  The 33 sample units 

with detections are noted with bold perimeters and a white dot to indicate the location of the detection. 
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Figure 4.  Boxplots for the 4 variables in the top 3 habitat models (SLOPE, TRI, RIVSTREAM, ASPECT).  The black bar is the mean value, the box 

represents the standard deviation, and the bars represent the range in values for the 33 sample units with detections and the 94 sample units with no 

detections.  See Table 2 for definitions for the variables.
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A 

 
 

B 

 
 

Figure 5.  Distribution of PAMB detection and non-detection sites among 10 probability of occupancy “bins” 

based on the best performing model (SLOPE+TRI+RIVSTREAM): (A) using the full data set from all sample 

units and (B) the distribution of 10 cross-validated data sets.  The final bin, >0.61, was chosen because of the 

general decline in occurrences in units that exceeded this value. 
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 A B 

 
 

Figure 6.  Map of the predicted values of habitat suitability for full and partial 25-ha sample units across the range of the PAMB in Mendocino 

County, California.  (A) Each color shade represents a 0.10-range of predicted values from lightest (0 – 0.10) to darkest gray (0.91 – 1.00).  (B) The 

suitable cells (> 0.34 predicted value) depicted in black and the unsuitable cells (< 0.34 predicted value) in white.  Simulation analysis (see text) 

identified an optimal ‘cut off’, or threshold, to distinguish suitable from unsuitable predicted habitat values, of 0.34. 



43 

 

43 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

2008 2013 2018 2023 2028 2033

Es
ti

m
at

e
d

 O
cc

u
p

an
cy

 

Year

? ? ? ?

 
Figure 7.  A hypothetical plot of monitoring occupancy for the 127 sample units surveyed across the PAMB 

geographic range.  The current estimate is represented at “2013” followed by place holders for estimates from 

successive 5-year reassessments of the same 127 sample units. 

 




