State of California Department of Fish and Wildlife

Memorandum

Date: 17-Feb-2017

- To: Marty Gingras BDR-IEP Operations Program Manager Department of Fish and Wildlife
- From: Jason DuBois Environmental Scientist Department of Fish and Wildlife

Subject: Predicting 2015 and 2016 White Sturgeon Year Class Index

I have attached the report detailing how we predict the 2015 and 2016 White Sturgeon Year Class Index (YCI) by modeling the relation of YCI as a function of Sacramento Valley Water Year Index. This memorandum serves as a formal way of documenting and preserving my work.

Predicting 2015 & 2016 White Sturgeon Year Class Index

Introduction

We can calculate a year class index (YCI) for White Sturgeon from Bay Study survey data (Fish 2010, Figure 1). This YCI is calculated using age-0 and age-1 fish and requires data over a 2-year span. Due to unforeseen circumstances, Bay Study fieldwork was markedly truncated in 2016 making it impossible to calculate a YCI for 2015 and 2016. Here we present an option for predicting the 2015 and 2016 White Sturgeon YCI by modeling the relation of YCI as a function of Sacramento Valley Water Year Index (SVWYI). I got the 1980-2015 SVWYI from http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST and a preliminary 2016 SVWYI from CDWR via Randy Baxter.

Figure 1: White Sturgeon Year Class Index 1980-2014 as calculated from Bay Study survey data. Red 'X' indicates values we wish to predict.

Relation of YCI on SVWYI

We used R software (R version 3.3.2 (2016-10-31)) to fit all models and to display data and model output. We used R packages stats (built-in) and ggplot2 (installed).

We find the relation of YCI ~ SVWYI is positively correlated (r = 0.75, p = 0.00000019). Visually, the relation might be described as exponential (Figure 2).

Figure 2: YCI as a function of SVWYI with loess line (blue) & 95% confidence interval (shaded), 1980-2014

We employ a linear model (with data transformation, equation 1) and a non-linear power model (PWR, equation 2, Crawley 2007). We fit linear models using stats::lm() and the power function using stats::nls(). Note: judging from the relation (Figure 2) applying a simple linear model (without data transformation) is obviously not appropriate, and so we opted not to fit this model.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{1}$$

$$y = ax^b \tag{2}$$

We estimate YCI (\hat{y}) using an exponential model (LOG, equation 3, natural log of YCI), and power function (LLG, equation 4, natural log of YCI and natural log of SVWYI). Note: when taking natural log of YCI, we added 1 to each YCI value due to the 0 values of YCI (ln(YCI + 1)). The non-linear power model (PWR) applies equation 2, where variable y and parameters **a** and **b** are now estimates (i.e., \hat{y} , \hat{a} , \hat{b}).

$$ln(\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x \tag{3}$$

$$ln(\hat{y}) = ln(\hat{\beta}_0) + \hat{\beta}_1 ln(x) \tag{4}$$

Model Coefficients

Both linear models are comparable in terms of adjusted \mathbb{R}^2 and residual standard error (RSE, Table 1). We obtain least-squares estimates (for parameters a & b) from our non-linear model, but only b is statistically significant (Table 2, see p-value in $\Pr(|t|)$, p<0.05). We will look into this further, but for this exercise we will visually compare the fit of this model with the two linear models.

Model	Beta0	Beta1	RSE	FStat	AdjRsq	Df	PVal
Lin-Exp Lin-Pwr	-2.843751 -7.853082	$\begin{array}{c} 0.6329178 \\ 5.0049407 \end{array}$	$\begin{array}{c} 1.300187 \\ 1.375299 \end{array}$	$\begin{array}{c} 73.06902 \\ 61.79951 \end{array}$	$\begin{array}{c} 0.6794540 \\ 0.6413484 \end{array}$	33 33	p<0.05 p<0.05

Table 1: Results of fitting linear regression models to YCI as a function of SVWYI. 'Beta0' is intercept, and Beta1 is slope.

Table 2: Results of fitting non-linear regression model to YCI as a function of SVWYI.

	Estimate	Std. Error	t value	$\Pr(> t)$
a b	$\begin{array}{c} 0.0024188 \\ 4.5964187 \end{array}$	$0.0043180 \\ 0.6804946$	$\begin{array}{c} 0.5601683 \\ 6.7545265 \end{array}$	$0.5791479 \\ 0.0000001$

We can now add the estimated model parameters to our equations. Note: for linear models, we take the antilog of Beta0 (e.g., $exp(\beta_0)$)

$$\hat{y} = 0.058207 e^{0.6329178x}$$
 (linear exponential)
 $\hat{y} = 0.0003885525x^{5.0049407}$ (linear power)
 $\hat{y} = 0.00241881x^{4.5964187}$ (non-linear power)

Plotting Model Fits

Visually, it appears the power function (PWR) fit with stats::nls() would yield a reasonable prediction (Figure 3). However, we would need to complete further testing to compare models and model fit.

Figure 3: YCI as a function of SVWYI with lines of three model fits, 1980-2014.

Predict 2015 White Sturgeon Year Class Index

Given our models, we can now predict a 2015 and 2016 White Sturgeon YCI. The Sacramento Valley Water Year Index for 2015 was 4.01 and for 2016 was 6.7.

2015

$$\begin{split} YCI_{\rm LOG} &= 0.7365707 \\ YCI_{\rm LLG} &= 0.40565 \\ YCI_{\rm PWR} &= 1.4318774 \end{split}$$

2016

$$\begin{split} YCI_{\rm LOG} &= 4.0422391 \\ YCI_{\rm LLG} &= 5.2954773 \\ YCI_{\rm PWR} &= 15.1560992 \end{split}$$

References

Crawley MJ. 2007. The R Book. First Edition. John Wiley & Sons, Ltd., England. 942 p.

Fish MA. 2010. A white sturgeon year-class index for the San Francisco Estuary and its relation to delta outflow. Interagency Ecological Program for the San Francisco Estuary Newsletter 23(2). https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentId=26542

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

ran report: 2017-02-17 11:42:36 end report CDFW Sportfish Unit